
International Journal of Computer Mathematics, 2015
Vol. 92, No. 8, 1520–1535 http://dx.doi.org/10.1080/00207160.2014.957196

A provable secure pairing-free certificateless identification
scheme

Ji-Jian China∗, Syh-Yuan Tanb, Swee-Huay Hengb, Raphael C.-W. Phana and Rouzbeh Behniab

aFaculty of Engineering, Multimedia University, 63100 Cyberjaya, Selangor, Malaysia; bFaculty of
Information Science and Technology, Multimedia University, 75450 Bukit Beruang, Melaka, Malaysia

(Received 8 November 2013; revised version received 8 June 2014; accepted 18 August 2014)

Certificateless identification (CLI) schemes offer an alternative solution to the certificate management
problem of traditional identification schemes, as well as remove the key escrow from key generation, an
inherent property of identity-based identification. In this paper, we provide a pairing-free CLI scheme,
provable secure against passive and active/concurrent attacks for both Type-1 and Type-2 adversaries.
This shows that our scheme is computationally efficient because no bilinear pairings are involved.

Keywords: certificateless identification; pairing-free; provable secure; no key escrow; discrete logarithm

2010 AMS Subject Classifications: 94A60; 94A62; 14G50, 11T71; 68R99

1. Introduction

Identification schemes allow a user to prove himself to a verifier without any revelation of his
secret key. Usually this is used to control allocation of access to resources to the appropriate
users. In traditional cryptography, a user’s public key is bound to his entity via a certificate
issued by a Certificate Authority, making a scheme susceptible to key replacement attacks if
a certificate is not used. However, as the number of users grew larger, certificate management
becomes an issue.

Shamir proposed the notion of identity-based cryptography in [15], where a user can implic-
itly certify himself through the binding of a unique identity string to his user secret key. The
first identity-based identification schemes were proposed by Neven and colleagues [4] and by
Kurosawa and Heng [13] independently and has seen considerable advances within the latter of
the last decade. However, key escrow exists for identity-based cryptographic schemes, naturally
because the trusted authority who holds the master secret key generates all the user secret keys
and has access to them. While desirable in some cases, key escrow can be a security issue in other
scenarios, where a user wants full confidentiality of his secret key, even from the key generation
authority that created it.

Certificateless cryptography, first proposed by Al-Riyami and Paterson [1], key generation
is split between the key generation centre (KGC), who only creates a partial user secret key,
and the user who completes the key generation process to create public and private key pairs

∗Corresponding author. Email: jjchin@mmu.edu.my

c© 2014 Taylor & Francis

D
ow

nl
oa

de
d 

by
 [

11
8.

10
0.

19
6.

7]
 a

t 1
0:

17
 2

1 
Ju

ly
 2

01
5 

mailto:jjchin@mmu.edu.my


International Journal of Computer Mathematics 1521

using his own secret value. Certificateless cryptography has seen its own evolution in research in
the last decade with many security notions defined and revisited, and with schemes proposed and
broken under different security assumptions. We direct the interested reader to the comprehensive
survey by Dent [9] for certificateless encryption schemes and to Huang et al.’s revisited notions
of certificateless signature schemes in [12] for the current research progress in certificateless
cryptography.

However, while much research has taken place in encryption and signature schemes for
certificateless cryptography, such as can be seen by works like [11] and [10], certificateless iden-
tification (CLI) schemes have remained largely unexplored. The first CLI schemes were first
proposed by Chin et al. [5] and Dehkordi and Alimoradi [8] independently. However, Dehkordi
and Alimoradi’s [8] work did not propose a proper security model for their scheme nor provide
any proof and subsequently was shown to be insecure by Chin et al. [6]. On the other hand, Chin
et al. [5] defined the first security model for CLI and subsequently proposed the first CLI scheme
based on pairings.

In this paper, we expand on the work in the area of CLI. We utilize the notions from [5]
but provide an alternative to the pairing-based CLI scheme. Our motivation for this work is to
provide a CLI scheme that is fast and efficient and is both free from certificate management issues
as well as key escrow. Our scheme is pairing-free, thus providing a computationally efficient
scheme, since it is widely known that pairings cost a lot in terms of computing operation. We
show that our scheme is secure against both passive and active/concurrent attackers of Super-
Type-1 and Super-Type-2 categories, as will be defined in the next section.

We divide our paper into the following sections: in Section 2, we introduce the basic secu-
rity notions of CLI schemes, including intractable mathematical assumptions used and security
definitions. In Section 3, we show the construction of our scheme. In Section 3.1, we pro-
vide 4 security proofs – passive security against Type-1 and Type-2 adversaries, as well as
active/concurrent security against Type-1 and Type-2 adversaries. In Section 4, we provide the
efficiency analysis of the algorithms of our scheme and conclude in Section 5.

2. Preliminaries

2.1 Problems and assumptions

Define G as a cyclic group of order q where q = (p− 1)/2 and p is a large prime. g is a generator
for the group G. The discrete logarithm problem is defined as follows:

(1) Discrete logarithm problem: Given g, Z = gz for some z ∈ Z
∗
q, compute z.

(2) One-more discrete logarithm problem: The one-more version of the discrete logarithm prob-
lem was initially proposed for proving security of blind signatures by Bellare et al. [3].
Subsequently, Bellare and Palacio used the same problem to prove the security against
active and concurrent attacks for the Schnorr identification scheme in [2]. Neven et al.
also used the same problem in [4] and to prove security against impersonation under active
and concurrent attacks for the BNN-IBI scheme in their paper. Subsequent work also uti-
lized the one-more problems frequently to achieve active and concurrent level security for
identification schemes.
The one-more discrete logarithm problem is modelled as a game played by an adversary
where the adversary is given 1k , G, q, g as input and access to two oracles CHALL and DLOG.
CHALL on any input returns a random point Wi, while DLOG on any input h will return z,
where z = loggh. The adversary is required to compute the discrete logarithms to all the tar-
get points W0 . . . Wn while using strictly less queries to the DLOG oracle. In other words,

D
ow

nl
oa

de
d 

by
 [

11
8.

10
0.

19
6.

7]
 a

t 1
0:

17
 2

1 
Ju

ly
 2

01
5 



1522 J.-J. Chin et al.

the adversary is required to find w0, . . . , wn where w0 = loggW0, . . . , wn = loggWn using the
DLOG oracle only i ≤ n times.

The discrete logarithm assumption and the one-more discrete logarithm assumption state that
there are no polynomial time algorithms for solving both the problems with non-negligible
probability.

2.2 Definition of CLI schemes

We extend the key generation process of traditional identification and identity-based identifica-
tion schemes to create the definition for CLI schemes. The CLI scheme consists of six polynomial
time algorithms:

• Setup is run by the KGC. It takes in the security parameter 1k as input and returns the master
public key MPK and the master secret key MSK. It publishes MPK and keeps MSK to itself.
• Partial-Private-Key-Extract is run by the KGC upon a user’s request for a partial private

key. It takes in MPK, MSK and a user’s identity ID, returns the partial private key PPKID for
the user. We assume this is done via a secure channel between the KGC and the user.
• Set-User-Key is run by the user when creating his own account. It takes in the security param-

eter 1k and the user’s identity ID as input, generates the secret value for a user SVID and a
corresponding user’s public key UPKID.
• Set-Private-Key is done by the user to combine the user’s identity ID, partial private key

PPKID, public key UPKID and secret value SVID into the full private key. It returns the user
private key as USK.
• Identification-Protocol is the interactive protocol run by the two algorithms Prover and Ver-

ifier. Both algorithms take in the master public key MPK, prover’s identity string ID, public
key UPKID, with the prover taking in the user private key USKID as auxiliary input. They
perform the three-step canonical honest verifier zero knowledge proof of knowledge protocol
with the following steps:
(1) Prover sends the COMMITMENT to the Verifier.
(2) Verifier sends the CHALLENGE to the Prover.
(3) Prover sends the RESPONSE to the Verifier, which the Verifier will choose to either

accept or reject.

2.3 Security notion for CLI schemes

We consider four types of adversaries for the CLI scheme, the Type-1 passive impersonator
IMP-PA-1 and the active/concurrent impersonator IMP-AA/CA-1, and the Type-2 passive
impersonator IMP-PA-2 and the active/concurrent impersonator IMP-AA/CA-2. The capabil-
ity between passive and active impersonator differs in that the passive impersonator can only
eavesdrop on conversations between honest parties, while the active impersonator can act as a
cheating verifier to gain knowledge from honest provers through interacting with them. The con-
current impersonator is an active impersonator who can run several instances of the protocol at
the same time.

Type-1 impersonators model malicious third-party impersonators who do not have access to
the master secret key, but is able to request and replace public keys with values of his own
selection. Type-2 impersonators model the malicious KGC who can generate partial private
keys of users. Based on certificateless signature schemes according to the definitions by Huang
et al. [12], adversarial classifications can be further broken down into the Normal-, Strong-

D
ow

nl
oa

de
d 

by
 [

11
8.

10
0.

19
6.

7]
 a

t 1
0:

17
 2

1 
Ju

ly
 2

01
5 



International Journal of Computer Mathematics 1523

and Super-type adversary for Type-1 and Type-2 categories, differing in what parameters they
have.

• Normal-type adversaries cannot obtain signatures of users once their public keys have been
replaced. In the identification setting, an adversary cannot use a prover to converse with a
verifier once its public key is replaced.
• Strong-type adversaries can obtain signatures of users with their public keys replaced, pro-

vided they supply the secret value of the replaced public key. In the identification setting, an
adversary can continue using a prover whose public key has been replaced, provided they
supply the secret value corresponding to the replaced public key for the conversation.
• Super-type adversaries can obtain signatures of users with their public key replaced without

having to supply the secret value of the replaced public key. In the identification setting, an
adversary can replace a prover’s public key and still use it to correspond with a verifier without
the new secret value.

The levels of security in terms of adversary types are Super>Strong>Normal, that is, if
an identification scheme is secure against Super-type adversaries, it means that they are secure
against Strong- and Normal-type adversaries as well.

We describe the security model of CLI schemes against Type-1 and Type-2 impersonators
as the following games, and highlight the differences in capabilities when making identification
queries within the game for both passive and active/concurrent impersonators as well as Normal,
Strong and Super categories.

Game I. The game is played between a challenger C and the Type-1 Impersonator I1 for the
CLI scheme � as follows:

• Setup C runs Setup and passes the system parameters params to I1. It keeps the master secret
key MSK to itself.
• Phase 1: In this training phase, I1 will be allowed to make the following queries adaptively

to C:
(a) ExtrPartSK(ID). On request for the partial private key PPK on user ID, C will run

Partial-Private-Key-Extract and returns the user’s partial private key to I1.
(b) ExtrFullSK(ID). On request for the full private key USK on user ID, C will run Partial-

Private-Key-Extract, Set-User-Key and Set-Private-Key algorithms to generate the
complete user’s private key and passes it to I1.

(c) RequestPK(ID). On request for the public key UPK on user ID, C will run Set-User-Key
to generate the user’s public key and passes it to I1.

(d) ReplacePK(ID,UPK’). I1 is able to replace the user ID’s public key UPK with the public
key UPK’ chosen by him. Note that the corresponding secret value is not required for
public key replacement queries.

(e) Identification(ID). For passive I1, C will construct a valid transcript for a round of inter-
action between user ID and itself as the verifier and returns the transcript to I1. For
active/concurrent I1, C will play the role of the prover to interact with I1 as the cheating
verifier:

(i) Normal-type adversaries cannot make an identification query for a prover if its public
key has been replaced.

(ii) Strong-type adversaries has to additionally supply SV which is the corresponding
secret value for the public key. If SV = ⊥ then the public key is the original one.
Otherwise C will use SV in the conversation for the replaced public key.

(iii) Super-type adversaries can continue to make identification queries without supply-
ing SV even for replaced public keys.

D
ow

nl
oa

de
d 

by
 [

11
8.

10
0.

19
6.

7]
 a

t 1
0:

17
 2

1 
Ju

ly
 2

01
5 



1524 J.-J. Chin et al.

• Phase 2. I1 will eventually output ID∗ on which it wants to be challenged on. I1 will now play
the role of the cheating prover while C assumes the role of the verifier. I1 wins the game it
manages to convince C to accept.

Definition 2.1 We say an CLI scheme � is (t, qI , ε) -secure under passive or
active/concurrent attacks if for any passive or active/concurrent Type-1 impersonator I1 who
runs in time t, Pr[I1can impersonate] < ε, where I1 can make at most qI extract queries on
partial or full private keys.

Game II. The game is played between a challenger C and the Type-2 Impersonator I2 for the
CLI scheme � as follows:

• Setup C runs Setup and passes both the system parameters params and the master secret key
MSK to I2.
• Phase 1: In this training phase, I2 will be allowed to make the following queries adaptively

to C.
(a) ExtrFullSK(ID). On request for the full private key USK on user ID, C will run Partial-

Private-Key-Extract, Set-User-Key algorithms to generate the complete user’s private
key and passes it to I2

(b) RequestPK(ID). On request for the public key UPK on user ID, C will run Set-User-Key
to generate the user’s public key and passes it to I2.

(c) ReplacePK(ID,UPK’). I2 is able to replace the user ID’s public key UPK with the public
key UPK’ chosen by him. Once again, the corresponding secret value is not required for
public key replacement queries. The only exception is the target ID, ID∗, otherwise it will
be trivial to win the game.

(d) Identification(ID). For passive I2, C will generate a valid transcript on between user ID
and itself as the verifier and returns the transcript to I2. For active/concurrent I2, C will
play the role of the prover to interact with I2 as the cheating verifier:
(i) Normal-type adversaries cannot make an identification query for a prover if its public

key has been replaced.
(ii) Strong-type adversaries has to additionally supply SV which is the corresponding

secret value for the public key. If SV = ⊥ then the public key is the original one.
Otherwise C will use SV in the conversation for the replaced public key.

(ii) Super-type adversaries can continue to make identification queries without supplying
SV even for replaced public keys.

• Phase 2. I2 will eventually output ID∗ on which it wants to be challenged on. I2 will now play
the role of the cheating prover while C assumes the role of the verifier. I2 wins the game it
manages to convince C to accept.

Note that I2 does not need to perform ExtrPartSK queries as it already has the master secret key
and can generate partial private keys itself. I2 is also not allowed to replace the public key of the
challenge identity, but is able to do so for any other user.

Definition 2.2 We say an CLI scheme is (t, qI , ε) -secure under passive or active/concurrent
attacks if for any passive or active/concurrent Type-2 impersonator I2 who runs in time t,
Pr[I2can impersonate] < ε, where I2 can make at most qI extract queries on full private keys.

D
ow

nl
oa

de
d 

by
 [

11
8.

10
0.

19
6.

7]
 a

t 1
0:

17
 2

1 
Ju

ly
 2

01
5 



International Journal of Computer Mathematics 1525

3. Construction

In this section, the construction of the Schnorr-CLI scheme is presented. This scheme is named
Schnorr-CLI due to its shared key generation algorithm inspired by the signature scheme from
[14]. The scheme is described as follows:

• Setup(1k)

(1) Select a group G of order q and a generator g ∈ G. Choose a random a
$→ Zq and compute

g1 = g−a.
(2) Select two hash functions H1 : {0, 1}∗ × G× G→ Zq and H2 : {0, 1}∗ × G× G× G→

Zq.
(3) Publish the master public key mpk = 〈G, q, g, g1, H1, H2〉 and securely store the master

secret key msk = a.
• Partial-Private-Key-Extract(mpk, msk, ID)

(1) Select a random x
$→ Zq and compute X = gx.

(2) Compute α = H1(ID, g1, X ).
(3) Compute d = x+ aα.
(4) Return the partial private key ppk = 〈α, d〉.
• Set-User-Key(1k)

(1) Select a random b
$→ Zq and set the user’s secret value sv = b.

(2) Computes g2 = g−b.
(3) Outputs UPK1 = g2.
• Set-Private-Key(mpk, ppk, sv, upk, ID)

(1) Calculates X = gdgα
1 and checks if α = H1(ID, g1, X ).

(2) If correct, then calculate β = H2(ID, g1, X , g2).
(3) Compute s = d + bβ.
(4) Compute UPK2 = gβ

2 .
(5) Publish upk = 〈UPK1, UPK2〉 = 〈g2, gβ

2 〉.
(6) usk = 〈α, β, sID〉.
• Identification-Protocol:Prover(mpk,ID,usk) and Verifier(mpk,ID,upk)

(1) Prover selects a random r
$→ Zq and computes R = gr.

(2) Prover also calculates X = gsgα
1 gβ

2 and sends X,R to Verifier.

(3) Verifier selects a random c
$→ Zq and sends c to Prover.

(4) Prover computes response y = r + cs and sends y to Verifier.
(5) Verifier accepts if and only if gy = R(X/gα

1 gβ

2 )c and UPKβ

1 = UPK2, where α =
H1(ID, g1, X ) and β = H2(ID, g1, X , g2).

To prove correctness, one can show that

gy = gr+cs (1)

= gr(gs)c (2)

= gr(gx+aα+bβ)c (3)

= gr(gx−(−aα)−(−bβ))c (4)

= gr

(
gx

g−aαg−bβ

)c

(5)

= R

(
X

gα
1 gβ

2

)c

. (6)

D
ow

nl
oa

de
d 

by
 [

11
8.

10
0.

19
6.

7]
 a

t 1
0:

17
 2

1 
Ju

ly
 2

01
5 



1526 J.-J. Chin et al.

3.1 Security analysis

In this section, the four proofs of security of the Schnorr-CLI scheme is presented:

• Security against impersonation under passive attack for Super-Type-1 adversaries (IMP-PA-1).
• Security against impersonation under active/concurrent attack for Super-Type-1 adversaries

(IMP-AA/CA-1).
• Security against impersonation under passive attack for Super-Type-2 adversaries (IMP-PA-2).
• Security against impersonation under active/concurrent attack for Super-Type-2 adversaries

(IMP-AA/CA-2).

3.2 Type-1 impersonation under passive attack

Theorem 3.1 The Schnorr-CLI scheme is (t, qI , ε)-secure against impersonation under pas-
sive attacks against Super-Type-1 Impersonators in the random oracle if the discrete logarithm
problem is (t′, ε′)-hard, where

ε ≤
√

ε′e(qI + 1)+ 1

q
, t = t′ − O(qCLI), (7)

where qCLI = qHα
+ qHβ

+ qExtrPartSK + qExtrFullSK + qRequestPK + qReplacePK + qIdentification repre-
sent the number of respective oracle queries by the adversary.

Proof Assume the discrete logarithm problem is not (t′, ε′)-hard. We then show a simulator
M that (t′, ε′)-breaks the discrete logarithm problem if the Schnorr-CLI scheme is not (t, qI , ε)-
secure. M takes in input G, q, g, Z = gz and runs the Type-1 impersonator I1 as a subroutine.

Assume that any ExtrPartSK, RequestPK, ExtrFullSK and Identify queries are preceded
by a CreateUser query, while Identification and ExtrFullSK queries are preceded by the
RequestPK query. M also selects two hash functions H1 : {0, 1}∗ × G× G→ Zq and H2 :
{0, 1}∗ × G× G× G→ Zq that are programmed as random oracles.

M keeps two lists to respond to I1’s queries: Lα = 〈IDi, αIDi , XIDi = gx
IDi

, xIDi , dIDi〉 and Lβ =
〈IDi, βIDi , bIDi , g2,IDi = gbIDi , ϕ(= 0|1)〉 which are initially empty. The following shows how M
simulates the environment and oracle queries for I1:

(1) Setup: M selects a
$← Zq, computes g1 = g−a and sets the master public key as mpk =

〈G, q, g, g1, H1, H2〉.
(2) CreateUser(IDi): M handles CreateUser for two separate cases as follows:

(a) Challenge identity: To initialize the challenge identity, M then randomly picks j ∈ qH

out of i . . . qH sets IDj = ID∗. M then sets XID∗ = Z, randomly chooses bID∗
$← Zq and

computes g2,ID∗ = gbID∗ . M also chooses αID∗ , βID∗
$← Zq and sets the first entry in Lα =

〈ID∗, αID∗ , XID∗ ,⊥,⊥〉 and Lβ = 〈ID∗, βID∗ , bID∗ , g2,ID∗ , 0〉.
(b) Normal identities: Upon request of IDi by I1, M will create an entry for a new

user by choosing xIDi , bIDi

$← Zq and sets XIDi = gx
IDi

, g2,IDi = gbIDi . M also selects

αIDi , βIDi

$← Zq and lets dIDi = xIDi + aαIDi . M then creates entries in both lists as
Lα = 〈IDi, αIDi , XIDi , xIDi , dIDi〉 and Lβ = 〈IDi, βIDi , bIDi , g2,IDi = gbIDi , 0〉.

(3) ExtrPartSK(IDi) query: If IDi = ID∗ then M aborts the simulation. Otherwise M finds
〈IDi, αIDi , XIDi , xIDi , dIDi〉 in Lα and returns PPKIDi = 〈dIDi , αIDi〉.

(4) RequestPK(IDi) query: M retrieves 〈g2,IDi , g
βIDi
2,IDi
〉 from Lβ and sends it to I1.

(5) ExtrFullSK(IDi) query: If IDi = ID∗ then M aborts the simulation. Otherwise M finds dIDi

from Lα and bIDi , βIDi from Lβ . M returns USKIDi = 〈sIDi = dIDi + bIDiβIDi , β〉 to I1.

D
ow

nl
oa

de
d 

by
 [

11
8.

10
0.

19
6.

7]
 a

t 1
0:

17
 2

1 
Ju

ly
 2

01
5 



International Journal of Computer Mathematics 1527

(6) ReplacePK(IDi, ˜UPK1,IDi , ˜UPK2,IDi ) query: M first checks if the new public key is valid,

that is, the pair fulfils gUSK1,IDi = gPPK1,IDi ˜UPK
βIDi
1,IDi

and ˜UPK2,IDi = ˜UPK
βIDi
1,IDi

. This is because
I1 cannot change the hash value βIDi which is publicly verifiable. If yes, M sets UPKIDi =
〈 ˜UPK1,IDi , ˜UPK2,IDi〉 and ϕ = 1 for IDi in Lβ .

(7) Identification(IDi) query: I1 will act as the cheating verifier to learn information from valid
conversation transcripts from M. M retrieves IDi’s entries from Lα and Lβ . If IDi �= ID∗,
then M just runs ExtrFullSK on IDi to obtain the full user secret key, and uses that to
run the identification protocol. Otherwise, it must be that IDi = ID∗. M then creates a valid

transcript for each mth query by picking Xm,ID∗
$← G and ym,ID∗ , cm

$← Zq, sets Rm,ID∗ =
(gym,ID∗ /(Xm,ID∗/gαID∗

1 gβID∗
2 ))cm and passes the transcript 〈Xm,ID∗ , Rm,ID∗ , cm, ym,ID∗ 〉 to I1. It can

be shown that this is a valid transcript by using Verifier’s checking equation:

Rm,ID∗

(
Xm,ID∗

gαID∗
1 gβID∗

2

)cm

(8)

=
(

gym,ID∗

(Xm,ID∗/gαID∗
1 gβID∗

2 )

)cm
(

Xm,ID∗

gαID∗
1 gβID∗

2

)cm

(9)

= gym,IDP∗ . (10)

Note that the value bID∗ is not required even for replaced public keys; therefore, the Schnorr-CLI
scheme is able to answer identification queries for Super-Type-1 I1.

Eventually I1 stops phase 1 and outputs the challenge identity, ID∗. M checks if ID∗ = IDj and
aborts if not. Otherwise, M runs I1 now as a cheating prover. M then obtains I1’s commitment,

X,R, selects a challenge c1
$← Zq and obtains the response y1 from I1. M then resets I1 to the

state where it just sent its commitment, selects a second challenge c2
$← Zq and receives y2 as

response. M is then able to extract the full user secret key sID∗ as

y1 − y2

c1 − c2
(11)

= r − c1sID∗ − r − c2sID∗

c1 − c2
(12)

= (c1 − c2)sID∗

c1 − c2
(13)

= sID∗ . (14)

By using the knowledge of exponent assumption from [7], M extracts bID∗ for UPK1, UPK2 =
〈g−bID∗ , g−bID∗βID∗ 〉 that are generated from g, gβID∗ . It does not matter if bID∗ is the original or

replaced value, since it has to fulfil gsID∗ = gPPK1,IDi g
−bID∗βIDi
2 and UPK ′2,IDi

= g
−bID∗βIDi
2 .

Once bID∗ is extracted, M then calculates the solution to the discrete logarithm problem as

sID∗ − aαID∗ − bID∗βID∗ = z. (15)

It remains to calculate the probability of M solving the discrete logarithm problem and winning
the game. The probability of M successfully extracting two valid conversation transcripts from
I1 is bounded by (ε − 1/q)2 as given by the Reset Lemma [2]:

Pr[M wins DLP] (16)

= Pr
[
M computes z

∧
¬abort

]
(17)

D
ow

nl
oa

de
d 

by
 [

11
8.

10
0.

19
6.

7]
 a

t 1
0:

17
 2

1 
Ju

ly
 2

01
5 



1528 J.-J. Chin et al.

= Pr[M computes z|¬abort] Pr[¬abort] (18)

ε′ ≥
(

ε − 1

q

)2

Pr[¬abort]. (19)

Finally calculate Pr[¬abort]. Let δ be the probability that I1 issues an extract query (of either
ExtrPartSK or ExtrFullSK type) on ID∗ and that I1 makes a total of qI of such queries. The
probability of M answering all the extraction queries is δqI . In Phase 2, the probability of M not
aborting is if I1 outputs the challenge identity ID∗ which it has not queried before. This is given
by the probability 1− δ. Putting them together, the probability of M not aborting is δqI (1− δ).
This value is maximized at δopt = 1− 1/(qI + 1). Using δopt, the probability M does not abort is
at least 1/e(qI + 1) because the value (1− 1/(qI + 1))qI approaches 1/e for large qI . Therefore,
the advantage of M, ε′, and the bound of the simulation is given as

ε′ ≥
(

ε − 1

q

)2 1

e(qI + 1)
(20)

ε′e(qI + 1) ≥
(

ε − 1

q

)2

(21)

ε ≤
√

ε′e(qI + 1)+ 1

q
. (22)

�

3.3 Type-1 impersonation under active/concurrent attack

Theorem 3.2 The Schnorr-CLI scheme is (t, qI , ε)-secure against impersonation under active
and concurrent attacks against Super-Type-1 Impersonators (IMP-AA/CA-2) in the random
oracle if the one-more discrete logarithm problem is (t", q", ε")-hard where

ε ≤
√

ε"e(q"+ 1)+ 1

q
, t = t′ − O(qCLI), (23)

where qCLI = qHα
+ qHβ

+ qExtrPartSK + qExtrFullSK + qRequestPK + qReplacePK + qIdentification repre-
sent the number of respective oracle queries by the adversary.

Proof Assume the one-more discrete logarithm problem is not (t", q", ε")-hard. We then
show a simulator M that (t", q", ε")-breaks the one-more discrete logarithm problem if the
Schnorr-CLI scheme is not (t, qI , ε)-secure. M takes in input G,q,g, has access to CHALL
and DLOG oracles, and runs the Type-1 impersonator I1 as a subroutine. Assume that any
ExtrPartSK, RequestPK, ExtrFullSK and Identify queries are preceded by a CreateUser
query, while Identification and ExtrFullSK queries are preceded by the RequestPK query. M
also selects two hash functions H1 : {0, 1}∗ × G× G→ Zq and H2 : {0, 1}∗ × G× G× G→ Zq

that are programmed as random oracles. M keeps two lists to respond to I1’s queries: Lα =
〈IDi, αIDi , XIDi = gx

IDi
, xIDi , dIDi〉, Lβ = 〈IDi, βIDi , bIDi , g2,IDi = gbIDi , ϕ(= 0|1)〉 which are initially

empty. The following shows how M simulates the environment and oracle queries for I1:

(1) Setup: M selects a
$← Zq, computes g1 = g−a and sets the master public key as mpk =

〈G, q, g, g1, H1, H2〉 and passes it to I1.
(2) CreateUser(IDi): M handles CreateUser for two separate cases as follows:

(a) Challenge identity: To initialize the challenge identity, M then randomly picks j ∈ qH out
of i . . . qH sets IDj = ID∗. M also queries CHALL for the original challenge W0 then sets

D
ow

nl
oa

de
d 

by
 [

11
8.

10
0.

19
6.

7]
 a

t 1
0:

17
 2

1 
Ju

ly
 2

01
5 



International Journal of Computer Mathematics 1529

XID∗ = W0. Additionally M randomly chooses bID∗
$← Zq and computes g2,ID∗ = gbID∗ .

M also chooses αID∗ , βID∗
$← Zq and sets the first entry in Lα = 〈ID∗, αID∗ , XID∗ ,⊥,⊥〉

and Lβ = 〈ID∗, βID∗ , bID∗ , g2,ID∗ , 0〉.
(b) Normal identities: Upon request of IDi by I1, M will create an entry for a new

user by choosing xIDi , bIDi

$← Zq and sets XIDi = gx
IDi

, g2,IDi = gbIDi . M also selects

αIDi , βIDi

$← Zq and lets dIDi = xIDi + aαIDi . M then creates entries in both lists as
Lα = 〈IDi, αIDi , XIDi , xIDi , dIDi〉 and Lβ = 〈IDi, βIDi , bIDi , g2,IDi = gbIDi , 0〉.

(3) ExtrPartSK(IDi) query: If IDi = ID∗ then M aborts the simulation. Otherwise M finds
〈IDi, αIDi , XIDi , xIDi , dIDi〉 in Lα and returns PPKIDi = 〈dIDi , αIDi〉.

(4) ExtrFullSK(IDi) query: If IDi = ID∗ then M aborts the simulation. Otherwise M finds dIDi

from Lα and bIDi , βIDi from Lβ . M returns USKIDi = 〈sIDi = dIDi + bIDiβIDi , β〉 to I1.
(5) ReplacePK(IDi, ˜UPK1,IDi , ˜UPK2,IDi ) query: M first checks if the new public key is valid,

that is, the pair fulfils gUSK1,IDi = gPPK1,IDi ˜UPK
βIDi
1,IDi

and ˜UPK2,IDi = ˜UPK
βIDi
1,IDi

. This is because
I1 cannot change the hash value βIDi which is publicly verifiable. If yes, M sets UPKIDi =
〈 ˜UPK1,IDi , ˜UPK2,IDi〉 and ϕ = 1 for IDi in Lβ ;

(6) Identification(IDi) query: I1 will act as the cheating verifier to learn information from valid
conversation transcripts from M. M retrieves IDi’s entries from Lα and Lβ . If IDi �= ID∗, then
M just runs ExtrFullSK on IDi to obtain the full user secret key and uses that to run the iden-
tification protocol. Otherwise, it must be that IDi = ID∗. M then creates a valid conversation
for each mth query by first querying CHALL for Wi and sets Rm,ID∗ = Wi and Xm,ID∗ = W0. M

then sends 〈Xm,ID∗ , Rm,ID∗ 〉 to I1. I1 returns with a random cm
$← Zq. M then queries DLOG

with Wi(W0/gαID∗
1 gβID∗

2 )cm and returns the response as ym,ID∗ = DLOG(Wi(W0/gαID∗
1 gβID∗

2 )cm).
It can be shown that this is a valid conversation by using Verifier’s checking equation:

Rm,ID∗

(
Xm,ID∗

gαID∗
1 gβID∗

2

)cm

(24)

Wi

(
W0

gαID∗
1 gβID∗

2

)cm

(25)

= gym,ID∗ . (26)

Note that the value bID∗ is not required even for replaced public keys; therefore, the Schnorr-CLI
scheme is able to answer identification queries for Super-Type-1 I1.

Eventually I1 stops phase 1 and outputs the challenge identity, ID∗. M checks if ID∗ = IDj and
aborts if not. Otherwise, M runs I1 now as a cheating prover. M then obtains I1’s commitment,

X,R, selects a challenge c1
$← Zq and obtains the response y1 from I1. M then resets I1 to the

state where it just sent its commitment, selects a second challenge c2
$← Zq and receives y2 as

response. M is then able to extract the full user secret key sID∗ as

y1 − y2

c1 − c2
(27)

= r − c1sID∗ − r − c2sID∗

c1 − c2
(28)

= (c1 − c2)sID∗

c1 − c2
(29)

= sID∗ . (30)

D
ow

nl
oa

de
d 

by
 [

11
8.

10
0.

19
6.

7]
 a

t 1
0:

17
 2

1 
Ju

ly
 2

01
5 



1530 J.-J. Chin et al.

By using the knowledge of exponent assumption from [7], M extracts bID∗ for UPK1, UPK2 =
〈g−bID∗ , g−bID∗βID∗ 〉 that are generated from g, gβID∗ . It does not matter if bID∗ is the original or

replaced value, since it has to fulfil gsID∗ = gPPK1,IDi g
−bID∗βIDi
2 and UPK ′2,IDi

= g
−bID∗βIDi
2 .

Once bID∗ is extracted, M then calculates the solution to the discrete logarithm problem as

sID∗ − aαID∗ − bID∗βID∗ = w0. (31)

M is then able to calculate the solutions for the challenges w1, . . . , wm as

wj = yj − cj(w0 + aαID∗ + bID∗βID∗). (32)

The probability of M winning one-more discrete logarithm game is the same as the IMP-PA-1
game, except that ε′, the advantage of M in solving the discrete logarithm problem, is substituted
with ε", the advantage of M over the one-more discrete logarithm game. �

3.4 Type-2 impersonation under passive attack

Theorem 3.3 The Schnorr-CLI scheme is (t, qI , ε)-secure against impersonation under pas-
sive attacks against Super-Type-2 Impersonators in the random oracle if the discrete logarithm
problem is (t′, ε′)-hard where

ε ≤
√

ε′e(qI + 1)+ 1

q
, t = t′ − O(qCLI), (33)

where qCLI = qHα
+ qHβ

+ qExtrFullSK + qRequestPK + qReplacePK + qIdentification represent the num-
ber of respective oracle queries by the adversary.

Proof Assume the discrete logarithm problem is not (t′, ε′)-hard. We then show a simulator M
that (t′, ε′)-breaks the discrete logarithm problem if the Schnorr-CLI scheme is not (tIBI , qI , ε)-
secure. M takes in input G, q, g, Z = gz and runs the Type-2 impersonator I2 as a subroutine.
Assume that any RequestPK, ExtrFullSK and Identify queries are preceded by a CreateUser
query, while Identification and ExtrFullSK queries are preceded by the RequestPK query. M
also selects two hash functions H1 : {0, 1}∗ × G× G→ Zq and H2 : {0, 1}∗ × G× G× G→ Zq

that are programmed as random oracles. M keeps two lists to respond to I2’s queries: Lα =
〈IDi, αIDi , XIDi = gx

IDi
, xIDi , dIDi〉, Lβ = 〈IDi, βIDi , bIDi , g2,IDi = gbIDi , ϕ(= 0|1)〉 which are initially

empty. The following shows how M simulates the environment and oracle queries for I2:

(1) Setup: M picks a
$← Zq, computes g1 = g−a and sets the master public key as mpk =

〈G, q, g, g1 = g−a, H1, H2〉 and passes it to I2. It keeps the master secret key a to itself.
(2) CreateUser(IDi): M handles CreateUser for two separate cases as follows:

(a) Challenge identity: To initialize the challenge identity, M then randomly picks j ∈ qH

out of i . . . qH sets IDj = ID∗. M then sets g2,ID∗ = Z, randomly chooses xID∗
$← Zq and

computes XID∗ = gxID∗ . M also chooses αID∗ , βID∗
$← Zq and sets the first entry in Lα =

〈ID∗, αID∗ , XID∗ , xID∗ , dID∗ 〉 and Lβ = 〈ID∗, βID∗ ,⊥, g2,ID∗ , 0〉.
(b) Normal identities: Upon request of IDi by I2 where i �= j, M will create an entry for a

new user by choosing xIDi , bIDi

$← Zq and sets XIDi = gx
IDi

, g2,IDi = gbIDi . M also selects

αID∗ , βID∗
$← Zq and lets dIDi = xIDi + aαIDi . M then creates entries in both lists as Lα =

〈IDi, αIDi , XIDi , xIDi , dIDi〉 and Lβ = 〈IDi, βIDi , bIDi , g2,IDi = gbIDi , 0〉.
(3) ExtrFullSK(IDi) query: If IDi = ID∗ then M aborts the simulation. Otherwise M finds dIDi

from Lα and bIDi , βIDi from Lβ . M returns USKIDi = 〈sIDi = dIDi + bIDiβIDi , β〉 to I1.

D
ow

nl
oa

de
d 

by
 [

11
8.

10
0.

19
6.

7]
 a

t 1
0:

17
 2

1 
Ju

ly
 2

01
5 



International Journal of Computer Mathematics 1531

(4) ReplacePK(IDi, ˜UPK1,IDi , ˜UPK2,IDi ) query: This query is only applicable to identities where
IDi �= ID∗. M first checks if the new public key is valid, that is, the pair fulfils gUSK1,IDi =
gPPK1,IDi ˜UPK

βIDi
1,IDi

and ˜UPK2,IDi = ˜UPK
βIDi
1,IDi

. This is because I1 cannot change the hash value

βIDi which is publicly verifiable. If yes, M sets UPKIDi = 〈 ˜UPK1,IDi , ˜UPK2,IDi〉 and ϕ = 1
for IDi in Lβ .

(5) Identification(IDi) query: I2 will act as the cheating verifier to learn information from valid
conversation transcripts from M. M retrieves IDi’s entries from Lα and Lβ . If IDi �= ID∗,
then M just runs ExtrFullSK on IDi to obtain the full user secret key and uses that
to run the identification protocol. Otherwise, it must be that IDi = ID∗. M then creates

a valid transcript for each mth query by picking Xm,IDi

$← G and ym,IDi , cm
$← Zq, sets

Rm,IDi = (gym,IDi /(Xm,IDi/g
αIDi
1 g

βIDi
2 ))cm and passes the transcript 〈Xm,IDi , Rm,IDi , cm, ym,IDi〉 to I2.

It can be shown that this is a valid transcript by using Verifier’s checking equation:

Rm,IDi

(
Xm,IDi

g
αIDi
1 g

βIDi
2

)cm

(34)

=
(

gym,IDi

Xm,IDi/g
αIDi
1 g

βIDi
2

)cm
(

Xm,IDi

g
αIDi
1 g

βIDi
2

)cm

(35)

= gym,IDi . (36)

Note that the value bID∗ is not required even for replaced public keys; therefore, the Schnorr-CLI
scheme is able to answer identification queries for Super-Type-2 I2.

Eventually I2 stops phase 1 and outputs the challenge identity, ID∗. M checks if ID∗ = IDj

and aborts if not. Otherwise, M runs I2 now as a cheating prover. Since I2 is not allowed to
replace ID∗’s public key, the public key must be the one as originally created. M then obtains

I2’s commitment, X,R, selects a challenge c1
$← Zq and obtains the response y1 from I2. M then

resets I2 to the state where it just sent its commitment, selects a second challenge c2
$← Zq and

receives y2 as response. M is then able to extract the full user secret key sID∗ as

y1 − y2

c1 − c2
(37)

= r − c1sID∗ − r − c2sID∗

c1 − c2
(38)

= (c1 − c2)sID∗

c1 − c2
(39)

= sID∗ . (40)

M then calculates the solution to the discrete logarithm problem as

sID∗ − aαID∗ − xID∗

βID∗
= z. (41)

It remains to calculate the probability of M solving the discrete logarithm problem and winning
the game. The probability of M successfully extracting two valid conversation transcripts from
I2 is bounded by (ε − 1/q)2 as given by the Reset Lemma [2]:

Pr[M wins DLP] (42)

= Pr
[
M computes z

∧
¬abort

]
(43)

D
ow

nl
oa

de
d 

by
 [

11
8.

10
0.

19
6.

7]
 a

t 1
0:

17
 2

1 
Ju

ly
 2

01
5 



1532 J.-J. Chin et al.

= Pr[M computes z|¬abort] Pr[¬abort] (44)

ε′ ≥
(

ε − 1

q

)2

Pr[¬abort]. (45)

Finally calculate Pr[¬abort]. Let δ be the probability that I2 issues an ExtrFullSK on ID∗ and that
I2 makes a total of qI of such queries. The probability of M answering all the extraction queries is
δqI . In Phase 2, the probability of M not aborting is if I2 outputs the challenge identity ID∗ which
it has not queried before. This is given by the probability 1− δ. Putting them together, the prob-
ability of M not aborting is δqI (1− δ). This value is maximized at δopt = 1− 1/(qI + 1). Using
δopt, the probability M does not abort is at least 1/e(qI + 1) because the value (1− 1/(qI + 1))qI

approaches 1/e for large qI . Therefore, the advantage of M, ε′, and the bound of the simulation
is given as

ε′ ≥
(

ε − 1

q

)2 1

e(qI + 1)
(46)

ε′e(qI + 1) ≥
(

ε − 1

q

)2

(47)

ε ≤
√

ε′e(qI + 1)+ 1

q
. (48)

�

3.5 Type-2 impersonation under active/concurrent attack

Theorem 3.4 The Schnorr-CLI scheme is (t, qI , ε)-secure against impersonation under active
and concurrent attacks against Super-Type-2 Impersonators (IMP-AA/CA-2) in the random
oracle if the one-more discrete logarithm problem is (t", q", ε")-hard where

ε ≤
√

ε"e(qI + 1)+ 1

q
, t = t′ − O(qCLI), (49)

where qCLI = qHα
+ qHβ

+ qExtrFullSK + qRequestPK + qReplacePK + qIdentification represent the num-
ber of respective oracle queries by the adversary.

Proof Assume the one-more discrete logarithm problem is not (t", q", ε")-hard. We then show
a simulator M that (t", q", ε")-breaks the discrete logarithm problem if the Schnorr-CLI scheme
is not (t, qI , ε)-secure. M takes in input G,q,g, has access to CHALL and DLOG oracles, and
runs the Type-2 impersonator I2 as a subroutine. Assume that any RequestPK, ExtrFullSK
and Identify queries are preceded by a CreateUser query, while Identification and Extr-
FullSK queries are preceded by the RequestPK query. M also selects two hash functions H1 :
{0, 1}∗ × G× G→ Zq and H2 : {0, 1}∗ × G× G× G→ Zq that are programmed as random
oracles. M keeps two lists to respond to I2’s queries: Lα = 〈IDi, αIDi , XIDi = gx

IDi
, xIDi , dIDi〉, Lβ =

〈IDi, βIDi , bIDi , g2,IDi = gbIDi , ϕ(= 0|1)〉 which are initially empty. The following shows how M
simulates the environment and oracle queries for I2:

(1) Setup: M picks a
$← Zq, computes g1 = g−a and sets the master public key as mpk =

〈G, q, g, g1 = g−a, H1, H2〉 and passes it to I2. It keeps the master secret key a to itself.
(2) CreateUser(IDi): M handles CreateUser for two separate cases as follows:

D
ow

nl
oa

de
d 

by
 [

11
8.

10
0.

19
6.

7]
 a

t 1
0:

17
 2

1 
Ju

ly
 2

01
5 



International Journal of Computer Mathematics 1533

(a) Challenge identity: To initialize the challenge identity, M then randomly picks j ∈ qH out
of i . . . qH sets IDj = ID∗. M also queries CHALL for the original challenge W0 then sets

g2,ID∗ = W0. Additionally M randomly chooses x
$← Zq and computes XID∗ = gxID∗ . M

also chooses αID∗ , βID∗
$← Zq and sets the first entry in Lα = 〈ID∗, αID∗ , XID∗ , xID∗ , dID∗ 〉

and Lβ = 〈ID∗, βID∗ ,⊥, g2,ID∗ , 0〉.
(b) Normal identities: Upon request of IDi by I2, M will create an entry for a new

user by choosing xIDi , bIDi

$← Zq and sets XIDi = gx
IDi

, g2,IDi = gbIDi . M also selects

αID∗ , βID∗
$← Zq and lets dIDi = xIDi + aαIDi . M then creates entries in both lists as

Lα = 〈IDi, αIDi , XIDi , xIDi , dIDi〉 and Lβ = 〈IDi, βIDi , bIDi , g2,IDi = gbIDi , 0〉.
(3) ExtrFullSK(IDi) query: If IDi = ID∗ then M aborts the simulation. Otherwise M finds dIDi

from Lα and bIDi , βIDi from Lβ . M returns USKIDi = 〈sIDi = dIDi + bIDiβIDi , β〉 to I1.
(4) ReplacePK(IDi, ˜UPK1,IDi , ˜UPK2,IDi ) query: This query is only applicable to identities where

IDi �= ID∗. M first checks if the new public key is valid, that is, the pair fulfils gUSK1,IDi =
gPPK1,IDi ˜UPK

βIDi
1,IDi

and ˜UPK2,IDi = ˜UPK
βIDi
1,IDi

. This is because I1 cannot change the hash value

βIDi which is publicly verifiable. If yes, M sets UPKIDi = 〈 ˜UPK1,IDi , ˜UPK2,IDi〉 and ϕ = 1
for IDi in Lβ .

(5) Identification(IDi) query: I2 will act as the cheating verifier to learn information from valid
conversation transcripts from M. M retrieves IDi’s entries from Lα and Lβ . If IDi �= ID∗, then
M just runs ExtrFullSK on IDi to obtain the full user secret key, and uses that to run the iden-
tification protocol. Otherwise, it must be that IDi = ID∗. M then creates a valid conversation
for each mth query by first querying CHALL for Wi and sets Rm,IDi = Wi and Xm,IDi = gxID∗ .

M then sends 〈Xm,IDi , Rm,IDi〉 to I2. I2 returns with a random cm
$← Zq. M then queries DLOG

with Wi(W0/g
αIDi
1 g

βIDi
2 )cm and returns the response as ym,IDi = DLOG(Wi(W0/g

αIDi
1 g

βIDi
2 )cm). It

can be shown that this is a valid conversation by using Verifier’s checking equation:

Rm,IDi

(
Xm,IDi

g
αIDi
1 g

βIDi
2

)cm

(50)

= Wi

(
W0

g
αIDi
1 g

βIDi
2

)cm

(51)

= gym,IDi . (52)

Note that the value bID∗ is not required even for replaced public keys; therefore, the Schnorr-CLI
scheme is able to answer identification queries for Super-Type-2 I2.

Eventually I2 stops phase 1 and outputs the challenge identity, ID∗. M checks if ID∗ = IDj

and aborts if not. Otherwise, M runs I2 now as a cheating prover. If I2 has previously replaced
ID∗’s public key, M also obtains the corresponding secret value b’ from I2 and sets bID∗ = b′.

M then obtains I2’s commitment, X , R, selects a challenge c1
$← Zq and obtains the response y1

from I2. M then resets I2 to the state where it just sent its commitment, selects a second challenge

c2
$← Zq and receives y2 as response. M is then able to extract the full user secret key sID∗ as

y1 − y2

c1 − c2
(53)

= r − c1sID∗ − r − c2sID∗

c1 − c2
(54)

D
ow

nl
oa

de
d 

by
 [

11
8.

10
0.

19
6.

7]
 a

t 1
0:

17
 2

1 
Ju

ly
 2

01
5 



1534 J.-J. Chin et al.

= (c1 − c2)sID∗

c1 − c2
(55)

= sID∗ . (56)

M then calculates the solution to the initial challenge as

sID∗ − xIDi − aαID∗

βID∗
= w0. (57)

M is then able to calculate the solutions for the challenges w1, . . . , wm as

wj = yj − cj(xID∗ + aαID∗ + w0βID∗). (58)

The probability of M winning one-more discrete logarithm game is the same as the IMP-PA-2
game, except that ε′, the advantage of M in solving the discrete logarithm problem, is substituted
with ε", the advantage of M over the one-more discrete logarithm game. �

4. Efficiency analysis

The only other CLI scheme from [5] utilizes bilinear pairings. Since there are no other CLI
schemes that are pairing-free in existence, our proposed scheme is currently the fastest in lit-
erature, and therefore, we are unable to do any comparisons. Without pre-computation, the
Schnorr-CLI scheme requires the operational costs shown in Table 1.

However, it is possible to increase the scheme’s efficiency by pre-computing the value of X
and storing it as part of usk since it has to be sent to the verifier every run of the protocol. The
identification protocol with pre-computation has the operational costs given in Table 2.

Table 1. Operation costs for the Schnorr-CLI scheme without
pre-computation.

Algorithm H A M GM E

Setup 0 0 0 0 1
PPK-Extract 1 1 1 0 1
Set-User-Key 0 0 0 0 1
Set-Private-Key 2 1 1 1 3
Prover 0 1 1 2 4
Verifier 2 0 0 3 5

Note: H, Hash operation; A, Addition mod q; M, Multiplication mod q;
GM, Group Multiplication; E, Exponentiation mod q.

Table 2. Operation costs for the Schnorr-CLI scheme’s
identification protocol with pre-computation.

Algorithm H A M GM E

Prover 0 1 1 0 1
Verifier 2 0 0 3 5

Note: H, Hash operation; A, Addition mod q; M, Multiplication
mod q; GM, Group Multiplication; E, Exponentiation mod q.

D
ow

nl
oa

de
d 

by
 [

11
8.

10
0.

19
6.

7]
 a

t 1
0:

17
 2

1 
Ju

ly
 2

01
5 



International Journal of Computer Mathematics 1535

5. Conclusion

In this paper, we show a pairing-free CLI scheme secure against Type-1 and Type-2 adver-
saries, both passive and active/concurrent. Our scheme does not utilize any bilinear pairings
and therefore is efficient computationally.

Acknowledgements

This research was funded by Ministry of Higher Education Malaysia through the Exploratory Research Grant Scheme
ERGS/1/2011/PK/MMU/03/1 and the Fundamental Research Grant Scheme FRGS/2/2013/ICT07/MMU/03/5.

References

[1] S.S. Al-Riyami and K.G. Paterson, Certificateless public key cryptography, in ASIACRYPT, Taipei, Taiwan, Lecture
Notes in Computer Science, Vol. 2894, C.-S. Laih, ed., Springer, Berlin, Heidelberg, 2003, pp. 452–473.

[2] M. Bellare and A. Palacio, GQ and Schnorr identification schemes: Proofs of security against impersonation under
active and concurrent attacks, in CRYPTO, Santa Barbara, California, Lecture Notes in Computer Science, Vol.
2442, M. Yung, ed., Springer, Berlin, Heidelberg, 2002, pp. 162–177.

[3] M. Bellare, C. Namprempre, D. Pointcheval, and M. Semanko, The one-more-rsa-inversion problems and the
security of Chaum’s blind signature scheme, J. Cryptol. 16 (2003), pp. 185–215.

[4] M. Bellare, C. Namprempre and G. Neven, Security proofs for identity-based identification and signature schemes,
in EUROCRYPT, Interlaken, Switzerland, Lecture Notes in Computer Science, Vol. 3027, C. Cachin and J.
Camenisch, eds., Springer, Berlin, Heidelberg, 2004, pp. 268–286.

[5] J.J. Chin, R.C.W. Phan, R. Behnia and S.H. Heng, An efficient and provably secure certificateless identification
scheme, in SECRYPT, Rejkavik, Iceland, P. Samarati, ed., SciTePress, Lisbon, 2013, pp. 371–378.

[6] J.J. Chin, R. Behnia, S.H. Heng and R.C.W. Phan, Cryptanalysis of a certificateless identification scheme, Secur.
Commun. Networks (2014). Available at http://dx.doi.org/10.1002/sec.963.

[7] I. Damgård, Towards practical public key systems secure against chosen ciphertext attacks, in CRYPTO, Santa Bar-
bara, California, Lecture Notes in Computer Science, Vol. 576, J. Feigenbaum, ed., Springer, Berlin, Heidelberg,
1991, pp. 445–456.

[8] M.H. Dehkordi and R. Alimoradi, Certificateless identification protocols from super singular elliptic curve, Secur.
Commun. Networks 7(6) (2014), pp. 979–986.

[9] A.W. Dent, A survey of certificateless encryption schemes and security models, Int. J. Inf. Secur. 7 (2008),
pp. 349–377.

[10] D. He, S. Padhye, and J. Chen, An efficient certificateless two-party authenticated key agreement protocol, Comput.
Math. Appl. 64 (2012), pp. 1914–1926.

[11] D. He, Y. Chen and J. Chen, An efficient certificateless proxy signature scheme without pairing, Math. Comput.
Model. 57 (2013), pp. 2510–2518.

[12] X. Huang, Y. Mu, W. Susilo, D.S. Wong and W. Wu, Certificateless signature revisited, in ACISP, Townsville,
Australia, Lecture Notes in Computer Science, Vol. 4586, J. Pieprzyk, H. Ghodosi, and E. Dawson, eds., Springer,
Berlin, Heidelberg, 2007, pp. 308–322.

[13] K. Kurosawa and S.H. Heng, From digital signature to ID-based identification/signature, in Public Key Cryptog-
raphy, Singapore, Lecture Notes in Computer Science, Vol. 2947, F. Bao, R.H. Deng, and J. Zhou, eds., Springer,
Berlin, Heidelberg, 2004, pp. 248–261.

[14] C.P. Schnorr, Efficient identification and signatures for smart cards, in CRYPTO, Santa Barbara, California, Lecture
Notes in Computer Science, Vol. 435, G. Brassard, ed., Springer, Berlin, Heidelberg, 1989, pp. 239–252.

[15] A. Shamir, Identity-based cryptosystems and signature schemes, in CRYPTO, Santa Barbara, California, Lecture
Notes in Computer Science, Vol. 196, G. R. Blakley and D. Chaum, eds., Springer, Berlin, Heidelberg, 1984,
pp. 47–53.

D
ow

nl
oa

de
d 

by
 [

11
8.

10
0.

19
6.

7]
 a

t 1
0:

17
 2

1 
Ju

ly
 2

01
5 

http://dx.doi.org/10.1002/sec.963

