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Certificateless cryptography addresses the private key escrow problem in identity-based systems, while
overcoming the costly issues in traditional public key cryptography. Undeniable signature schemes were
proposed with the aim of limiting the public verifiability of ordinary digital signatures. The first certifi-
cateless undeniable signature scheme was put forth by Duan. The proposed scheme can be considered
as the certificateless version of the identity-based undeniable signature scheme which was introduced by
Libert and Quisquater. In this paper, we propose a new scheme which is much more efficient comparing
to Duan’s scheme. Our scheme requires only one pairing evaluation for signature generation and provides
more efficient confirmation and disavowal protocols for both the signer and the verifier. We also prove
the security of our scheme in the strong security model based on the intractability of some well-known
pairing-based assumptions in the random oracle model.
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1. Introduction

In conventional public key cryptography, the authenticity of users’ public keys is delivered by
means of signed certificates. Unfortunately, the costs of generating, verifying and managing these
certificates would be excessive when such systems are employed in a large scale. With the aim
of addressing these costly issues, Shamir [26] proposed the idea of identity-based cryptography.
In identity-based systems, the public key of the user is calculated from her publicly known infor-
mation (e.g. passport number, Media Access Control address, or email address) and her private
key is computed by a fully trusted third party called the Private Key Generator. Consequently,
such systems suffer from an inherited private key escrow problem.

In contemplation of bridging the gap between conventional public key cryptography and
identity-based cryptography, Al-Riyami and Paterson [1] introduced the concept of certificateless
cryptography. In certificateless paradigms, the semi-trusted third party called the Key Generation
Center (KGC) only supplies one half of the user’s private key (i.e. partial private key) which is
derived from her publicly available information. The other half of the user’s private key (i.e.
secret value) is computed and kept secure by the user herself. Mainly, in a certificateless system,
users are in charge of computing and publishing (e.g. on a public bulletin) their public keys.
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2 R. Behnia et al.

Since there is no certificate to deliver the authenticity of public keys, it should be expected that
the adversary is able to replace the public keys of users with public keys of its choice. We will
further discuss about the adversarial models of certificateless systems in Section 3.

Ordinary digital signatures have countless applications in today’s digital world. They provide
authentication, integrity and non-repudiation. Ordinary digital signatures are publicly verifiable,
more precisely, any user in the system with knowledge of the signer’s public key is able to
verify the validity of the signatures generated by that signer. This feature, however, may not be
suitable in some situations (i.e. when two parties sign a confidential document). Chaum and van
Antwerpen [5] introduced the notion of undeniable signature scheme with the aim of limiting
the public verifiability of ordinary digital signatures. In the new notion, verifying the validity or
invalidity of a signature is only possible with the direct help of its signer and via the confirmation
or disavowal protocol. In addition to the advantages of ordinary digital signatures, undeniable
signatures provide privacy for signers by limiting the public verifiability of their signatures.
Among the main applications of undeniable signature schemes, we can name software licensing,
e-cash and e-voting [3,5,25].

The first certificateless undeniable signature scheme was proposed by Duan [12]. The
proposed scheme requires two expensive pairing evaluations in its sign algorithm and its con-
firmation and disavowal protocols are quite costly as well. Duan’s scheme can be viewed as the
certificateless version of the identity-based undeniable signature scheme proposed by Libert and
Quisquater [23]. Recently, an efficient certificateless undeniable signature scheme was put forth
by Zhao and Ye [27]. The new scheme does not need any pairing evaluation in its sign algorithm.
However, the unforgeability of the scheme is questionable since it is only secure in a weak secu-
rity model where the adversary is not allowed to query for any signatures associated with the
private key of the target signer. This is a strong assumption since in the real world, the adversary
can easily get hold of signatures which were issued by the target signer. Moreover, the adversary
is not allowed to query for the secret value nor replace the target user’s public key which is again
a strong assumption since a Type I adversary (will be defined in Section 3.1) should be able to
perform both or at least one of the mentioned queries. Therefore, the scheme does not possess
the notion of invisibility against such adversary.

1.1 Contribution

In this paper, we first formalize the strong security model for certificateless undeniable signature
schemes. We then put forth an efficient certificateless undeniable signature scheme. Comparing
to the only certificateless undeniable signature scheme that is secure in the strong security model
[12], our scheme is much more efficient in its signature generation, proof generation and proof
verification algorithms. We employ the pairing-based version of Jakobsson et al.’s technique [20]
in order to provide non-interactive designated verifier proofs in the confirmation and disavowal
protocols of our scheme to address the man-in-the-middle [10] and blackmailing attacks [11,19].
Furthermore, we show how the signer in our scheme is able to selectively convert her undeniable
signatures to ordinary digital signatures by eliminating the trapdoor commitments in the proof
of confirmation/disavowal protocol. We prove the security of our efficient scheme in the strong
security model and based on the hardness of some well-known mathematical problems.

1.2 Paper organization

The rest of the paper is organized as follows. In Section 2, we provide some preliminaries and
definitions which are going to be used throughout this paper. In Section 3, we define the notion
of certificateless undeniable signature scheme and formalize the strong security model for such
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schemes. In Section 4, we proffer our efficient certificateless undeniable signature scheme and
compare its efficiency with the only secure scheme in the strong model [12]. We provide the
security analysis of our scheme in Section 5 and conclude our paper in Section 6.

2. Preliminaries

2.1 Bilinear pairing and the related problems

We let G1 be an additive cyclic group of prime order q, and G2 be a multiplicative cyclic group of
the same order. We denote P as a generator of G1. We also pick an admissible bilinear mapping
function e : G1 × G1 → G2 which satisfies the following properties:

(1) Bilinearity: For every P, Q ∈ G1 and a, b ∈ Zq we have e(aP, bQ) = e(P, Q)ab.
(2) Non-degeneracy: There exist P, Q ∈ G1 such that e(P, Q) �= 1.
(3) Computability: e is efficiently computable.

Bilinear Diffie–Hellman (BDH) problem: Given (P, aP, bP, cP), the BDH problem is to compute
e(P, P)abc, for P as a random generator of G1 and a random selection of a, b, c ∈ Zq.

Decisional Bilinear Diffie–Hellman (DBDH) problem: Given (P, aP, bP, cP, h), the DBDH
problem is to decide whether h = e(P, P)abc, for for P as a random generator of G1 and a random
selection of a, b, c ∈ Zq.

The hardness of the BDH problem in G1 is assumed to be equivalent to the Discrete Logarithm
problem [7]. As it was shown in [7], the DBDH problem in G1 is certainly not any harder than the
conventional Decisional Diffie–Hellman problem, nevertheless, there is no known probabilistic
polynomial time (PPT) algorithm capable of solving the DBDH problem so far.

3. Certificateless undeniable signature scheme

Generally, a certificateless undeniable signature scheme consists of the following algorithms and
protocols.

Setup: Given the security parameter(s), proper instances of groups G1 and G2 will be generated,
the KGC’s key pair (s, PPub) would be computed, and the system public parameters params will
be produced and published in the system.

Set-user-key: Using this algorithm, the user with identity ID picks her secret value xID and
computes the corresponding public key PKID.

Partial-private-key-extract: Provided the user’s identity ID and public key PKID, the KGC uses
the system wide secret key s to compute the user’s partial private key dID.

Set-private-key: The user with identity ID and public key PKID uses her secret value xID and
partial private key dID to compute her private key SID.

Sign: Provided a message m to be signed, the signer with identity ID and public key PKID uses
her private key SID to issue an undeniable signature σ .

Confirmation: Given a tuple (m, σ , ID, PKID), where σ is a valid signature on message m for a
signer with identity ID and public key PKID, the signer uses her private key SID to generate a
confirmation proof transcript for a verifier (possibly designated) to confirm the validity of the
tuple (m, σ , ID, PKID).

D
ow

nl
oa

de
d 

by
 [

M
ul

tim
ed

ia
 U

ni
ve

rs
ity

 M
el

ak
a]

, [
R

ou
zb

eh
 B

eh
ni

a]
 a

t 2
2:

43
 0

3 
Fe

br
ua

ry
 2

01
5 



4 R. Behnia et al.

Figure 1. Certificateless undeniable signature generation and verification.

Disavowal: Similar to the confirmation protocol, except that σ is an invalid signature and the
claimed signer uses her private key SID to generate a proof to disavow the validity of the
signature σ .

As it is shown in Figure 1, a certificateless undeniable signature schemes can be viewed in two
phases, namely a signature generation phase and a signature verification phase.

3.1 Security models of certificateless undeniable signature schemes

Since there is no certificate to deliver the authenticity of public keys in certificateless systems, we
always consider two types of adversaries when formulating the security models of certificateless
schemes.

• A Type I adversary AI models a third party adversary who has no knowledge over the system
wide secret key s, but is allowed to replace the users’ public keys with public keys of its choice.

• A Type II adversary AII , on the other hand, models an eavesdropping KGC who has knowl-
edge over the system wide secret key s. However, this type of adversary is not allowed to
replace the users’ public keys.

In some of the proposed security models [1,18,22], a Type II adversary (malicious KGC) is
assumed to generate its key pair honestly and initiate attacks only after the setup step (i.e. the
KGC is initially benign). In [2], Au et al. defined a security model against a malicious-but-passive
KGC, whereas the malicious KGC is assumed to generate its key pair dishonestly (i.e. the KGC
is malicious from the beginning) and somehow extracts the private key of the target user from
her public key. Even though, this type of adversary was never captured in the security models of
[1,17,22], the authors showed that these schemes and any other scheme which has the same key
generation as [1], is vulnerable against this type of attack.

In this paper, we make use of the binding method [1] in order to ensure the security against
malicious-but-passive KGC attacks (we will further discuss on how we address the attack in
Section 5). Moreover, using the binding technique, we can lift the trust level of the KGC in our
scheme to level 3 of Girault’s trust level hierarchy1 [14].

The following oracles can be queried by an adversary A ∈ {AI ,AII} based on the games’
specifications which are to be discussed a bit later.

Hash-oracle (Ohash): A can query different hash functions H in the system with any inputs of
his choice.

Public-key-request (Opub−key−req): A can query for the public key of any user in the system.

Partial-private-key-extract (Opart−key−extract): By providing the user’s identity ID and the corre-
sponding public key PKID, A can query for the user’s partial private key dID.
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Secret-value-extract (Osec−val−extract): By providing the user’s identity ID and the corresponding
public key PKID, A can query for the user’s secret value xID.

Private-key-extract (Opriv−key−extract): By providing the user’s identity ID and the corresponding
public key PKID, A can query for the user’s private key SID.

Public-key-replacement (Opub−key−replace): A is allowed to replace the public key PKID of any
user ID with public key of his choice PK ′

ID.

Sign-oracle (Osign): By providing a message m, and the identity ID of the alleged signer (with
public key PKID) no matter whether the identity ID appears in the public key replace query or
not, the oracle returns a valid undeniable signature σ .

Confirmation/Disavowal-oracle (Oconf /disav): By providing a valid/invalid message-signature
pair (m, σ), the identity ID of the claimed signer with public key PKID, and possibly the identity
and public key of the designated verifier, this oracle returns the confirmation/disavowal proof
transcript in order to prove the validity/invalidity of the signature σ .

An undeniable signature scheme is said to be secure if it meets the following security
notions:

(1) Existential unforgeability: The notion of existential unforgeability of a certificateless unde-
niable signature scheme ensures the inability of an adversary A ∈ {AI ,AII} to generate
signatures on behalf of any user (which the private key has not been exposed) in the system.

(2) Invisibility: The notion of invisibility [6], distinguishes undeniable signatures from ordinary
digital signatures. Provided a message-signature pair (m, σ) for the claimed signer with iden-
tity ID and public key PKID, the notion of invisibility implies the inability of an adversary
A ∈ {AI ,AII} to determine the validity or invalidity of the signature σ without the help of
its signer.

(3) Anonymity: The notion of anonymity was introduced by Galbraith and Mao [13], and it is
considered as the most relevant notion to undeniable signature scheme. Informally, given the
identities and public keys of two possible signers and a message-signature pair (m, σ), the
notion of anonymity implies the inability of an adversary A ∈ {AI ,AII} to determine which
signer has generated the signature σ .

In the following, we propose our security models for certificateless undeniable signature
schemes. In addition to the capabilities of adversaries in [12], we allow the adversary A ∈
{AI ,AII} to replace the public keys of any user in the system (excluding the target user for a
Type II adversary AII ).

We first define our security models against a Type I adversary (through Definition 1–3) and
then against a Type II adversary (through Definition 4–6).

Definition 1 We consider a certificateless undeniable signature scheme to be existentially
unforgeable under adaptive chosen message, identity and public key attacks if no PPT Type I
adversary FI has a non-negligible advantage in the following game:

Setup phase. The challenger C runs the setup algorithm and provides FI with the system wide
public parameters params.

Query phase. FI can adaptively query Ohash,Opub−key−req,Opart−key−extract,Opriv−key−extract,
Opub−key−replace,Osign and Oconf /disav. C responds to all the queries accordingly (as stated in their
definition above).

At the end of the game, FI outputs a valid message-signature pair (m∗, σ ∗) for the signer with
identity ID∗ and public key PKID∗ . FI wins the above game if (ID∗, PKID∗) was never queried
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6 R. Behnia et al.

to Opart−key−extract or Opriv−key−extract and σ ∗ was never outputted by Osign on the input of m∗ and
(ID∗, PKID∗).

Definition 2 A certificateless undeniable signature scheme is considered to fulfill the notion
of invisibility under adaptive chosen message, identity and public key attacks if no PPT Type I
adversary DI has a non-negligible advantage in the following game:

Setup phase. This phase takes place identical to the game of Definition 1.

Query phase (before challenge). DI can initiate polynomially bounded number of queries as
defined in the game of Definition 1.

Challenge phase. After the first round of queries, DI requests a challenge signature on a message
m∗ for a signer with identity ID∗ and public key PKID∗ . Where (ID∗, PKID∗) was never queried
to Opart−key−extract or Opriv−key−extract. Then, C generates the challenge signature σ ∗ based on the
outcome of a random coin toss c ∈ {0, 1}. If c = 0, C will select a random σ ∗ ∈ S, where S is
the signature space and sends σ ∗ to DI . Otherwise, if c = 1, the challenger generates a valid
signature σ ∗ and sends it back to DI .

Query phase (after challenge). DI initiates the second round of queries, this time, DI is not
allowed to query Opart−key−extract or Opriv−key−extract on the identity ID∗ with public key PKID∗ , nor
the confirmation/disavowal oracle on (m∗, σ ∗, ID∗, PKID∗).

At the end of the game, DI outputs its decision bit d ∈ {0, 1} and wins the game if d = c.

Definition 3 A certificateless undeniable signature scheme is considered to fulfill the notion
of anonymity under adaptive chosen message, identity and public key attacks if no PPT Type I
adversary DI has a non-negligible advantage in the following game:

Setup phase. This phase takes place identical to the game of Definition 1.

Query phase (before challenge). DI can initiate polynomially bounded number of queries as
defined in the game of Definition 1.

Challenge phase. After the first round of queries, DI produces a message m∗, and two tuples
(ID0, PKID0) and (ID1, PKID1) containing the identities and the public keys of two possible sign-
ers with the limitation that they were never queried to Opart−key−extract or Opriv−key−extract. The
challenger C responds based on the outcome of a random coin toss c ∈ {0, 1} and generates the
challenge signature σ ∗ on the message m∗ for a signer with identity IDc and public key PKIDc .

Query phase (after challenge). DI initiates the second round of queries, this time, DI is not
allowed to query Opart−key−extract or Opriv−key−extract on (ID0, PKID0) or (ID1, PKID1), nor the
confirmation/disavowal oracle on tuples (m∗, σ ∗, ID0, PKID0) or (m∗, σ ∗, ID1, PKID1).

At the end of the game, DI outputs its decision bit d ∈ {0, 1} and wins the game if d = c.

Definition 4 We consider a certificateless undeniable signature scheme to be existentially
unforgeable under adaptive chosen message, identity and public key attacks if no PPT Type II
adversary FII has a non-negligible advantage in the following game:

Setup phase. The challenger C runs the setup algorithm and provides FII with the master secret
key s and the system wide public parameters params.
Query phase. FII can adaptively query Ohash,Opub−key−req,Osec−val−extract,Opriv−key−extract,
Opub−key−replace,Osign and Oconf /disav. C responds to all the queries accordingly (as stated in their
definition above).
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International Journal of Computer Mathematics 7

At the end of the game, FII outputs a valid message-signature pair (m∗, σ ∗) for a signer with
identity ID∗ and public key PKID∗ . FII wins the above game if (ID∗, PKID∗) was never queried
to Osec−val−extract, Opriv−key−extract or Opub−key−replace, and σ ∗ was never outputted by Osign on the
input of m∗ and (ID∗, PKID∗).

Definition 5 A certificateless undeniable signature scheme is considered to fulfill the notion
of invisibility under adaptive chosen message, identity and public key attacks if no PPT Type II
adversary DII has a non-negligible advantage in the following game:

Setup phase. This phase takes place identical to the game of Definition 4.

Query phase (before challenge). DII can initiate polynomially bounded number of queries as
defined in the game of Definition 4.

Challenge phase. After the first round of queries, DII requests a challenge signature on a message
m∗ for a signer with identity ID∗ and public key PKID∗ . Where (ID∗, PKID∗) was never queried to
Osec−val−extract, Opriv−key−extract or Opub−key−replace. The challenger C then generates the challenge
signature σ ∗ based on the outcome of a random coin toss c ∈ {0, 1}. If c = 0, C selects a random
σ ∗ ∈ S, where S is the signature space and sends σ ∗ to DII . Otherwise, if c = 1, the challenger
generates a valid signature σ ∗ and sends it back to DII .

Query phase (after challenge). DII initiates the second round of queries, this time, DII is not
allowed to query Osec−val−extract, Opriv−key−extract or Opub−key−replace on the identity ID∗ with public
key PKID∗ , nor the confirmation/disavowal oracle on (m∗, σ ∗, ID∗, PKID∗).

At the end of the game, DII outputs its decision bit d ∈ {0, 1} and wins the game if d = c.

Definition 6 A certificateless undeniable signature scheme is considered to fulfill the notion
of anonymity under adaptive chosen message, identity and public key attacks if no PPT Type II
adversary DII has a non-negligible advantage in the following game:

Setup phase. This phase takes place identical to the game of Definition 4.

Query phase (before challenge). DII can initiate polynomially bounded number of queries as
defined in the game of Definition 4.

Challenge phase. After the first round of queries, DII produces a message m∗, and two
tuples (ID0, PKID0) and (ID1, PKID1) containing the identities and public keys of two possi-
ble signers with the limitation that they were never queried to Osec−val−extract, Opriv−key−extract or
Opub−key−replace. The challenger C responds based on the outcome of a random coin toss c ∈ {0, 1}
and generates the challenge signature σ ∗ on the message m∗ for a signer with identity IDc and
public key PKIDc .

Query phase (after challenge). DII initiates the second round of queries, this time, DII is not
allowed to query Osec−val−extract, Opriv−key−extract or Opub−key−replace on (ID0, PKID0) or (ID1, PKID1),
nor the confirmation/disavowal oracle on tuples (m∗, σ ∗, ID0, PKID0) or (m∗, σ ∗, ID1, PKID1).

At the end of the game, DII outputs its decision bit d ∈ {0, 1} and wins the game if d = c.

4. Efficient certificateless undeniable signature scheme

In this section, we propose our efficient scheme in detail and then compare its efficiency to the
only scheme that is secure in the strong security model [12].
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8 R. Behnia et al.

4.1 The proposed scheme

Setup: The setup algorithm is initiated by the KGC. It takes two security parameters k and
l, and generates groups G1 and G2 of prime order q ≥ 2k , a generator P of G1, and an
admissible bilinear map e : G1 × G1 → G2. It also chooses 4 cryptographic hash functions:
H1 : {0, 1}∗ × G1 × G1 → G1, H2 : {0, 1}∗ × {0, 1}l × {0, 1}∗ × G1 × G1 → G1, and H3, H4 :
G2 × . . . × G2 → Zq. Next, it picks s ∈ Zq randomly as the master secret key and calculates
PPub = sP as the corresponding public key. The KGC’s public key PPub and the system’s public
parameters params = (q, G1, G2, P, PPub, H1, H2, H3, H4) will be made available to all the users
in the system.

Set-user-keys: The user with identity ID chooses xID ∈ Zq randomly as her secret value and
computes her public key as PKID = (TVID = xIDP, TSID = xIDPPub).

Partial-private-key-extraction: Provided the user’s identity ID and public key PKID =
(TVID, TSID), the KGC computes her partial private key as dID = sQID = sH1(ID, TVID, TSID),
and delivers it to the user in a secure manner.

Set-private-key: After the user with identity ID and public key PKID received her partial private
key dID, she will form her private key as SID = xIDdID.

Sign: To issue a signature on a message m ∈ {0, 1}∗, the signer Alice with identity IDA and
public key PKIDA = (TVIDA , TSIDA) chooses a random string r ∈ {0, 1}l and computes hS =
H2(m, r, IDA, TVIDA , TSIDA) ∈ G1. She then uses her private key SIDA to calculate λ = e(hS , SIDA),
and forms the signature σ = (r, λ).

Confirmation: Given a valid message-signature pair (m, σ = (r, λ)), the alleged signer (Alice)
with identity IDA and public key PKIDA = (TVIDA , TSIDA) generates a non-interactive confir-
mation proof for the designated verifier Bob (with identity IDB and public key PKIDB =
(TVIDB , TSIDB)) as follows.

• Choose ν ∈ Zq and U , Y ∈ G1 at random, and compute W = e(P, U)e(TSIDB , QB)ν , N =
e(P, Y ), and O = e(H2(m, r, IDA, TVIDA , TSIDA), Y ).

• Set the values of hC = H3(W , N , O, m, σ) and B = Y − (hC + ν)SIDA in order to form the
confirmation proof transcript as (U , ν, hC , B).

Upon receiving the confirmation proof transcript (U , ν, hC , B), Bob checks if e(TVIDA , PPub) =
e(TSIDA , P) holds, he computes W ′ = e(P, U)e(TSIDB , QB)ν , N ′ = e(P, B)e(TSIDA , QA)(hC+ν)

and O′ = e(H2(m, r, IDA, TVIDA , TSIDA), B)λ(hC+ν) and will confirm the validity of the
message-signature pair (m, σ = (r, λ)) for the alleged signer (Alice) if and only if hC =
H3(W ′, N ′, O′, m, σ) holds.

Disavowal: Given an invalid message-signature pair (m, σ = (r, λ)), the claimed signer (Alice)
with identity IDA and public key PKIDA = (TVIDA , TSIDA) generates a non-interactive disavowal
proof for the designated verifier Bob (with identity IDB and public key PKIDB = (TVIDB , TSIDB))

as follows.

• Parse σ into (r, λ) and choose ν, α ∈ Zq and U ∈ G1 at random in order to compute W =
e(P, U)e(TSIDB , QB)ν and C = (e(H2(m, r, IDA, TVIDA , TSIDA), SIDA)/λ)α .

• Alice has to prove her knowledge of a pair (J , α) ∈ G1 × Zq such that C =
(e(H2(m, r, IDA, TVIDA , TSIDA), J)/λα) and e(P, J) = e(TSIDA , QA)α hold. In order to do so, she
works as follows.
◦ Choose y ∈ Zq and I ∈ G1 randomly to compute K = e(P, I)e(TSIDA , QA)−y, and L =

e(H2(m, r, IDA, TVIDA , TSIDA), I)λ−y.
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Table 1. Efficiency comparison.

Duan’s scheme [12] Proposed scheme

Sign – 2pe + 1ex 1pe

Confirmation Signer 6pe + 3ex + 3sm 4pe + 1ex + 1sm
Verifier 8pe + 6ex + 1sm 7pe + 3ex

Disavowal Signer 10pe + 8ex + 4sm 6pe + 4ex + 2sm
Verifier 8pe + 7ex + 1sm 7pe + 4ex

◦ Set the values of hD = H4(C, W , K, L, m, σ), R = I − (hD + ν)J , and μ = y − (hD + ν)α

in order to form the disavowal proof transcript as (C, U , ν, hD, R, μ).

Given the disavowal proof transcript (C, U , ν, hD, R, μ), Bob first checks if e(TVIDA , PPub) =
e(TSIDA , P) holds and C �= 1, he computes W ′ = e(P, U)e(TSIDB , QB)ν , K ′ = e(P, R)e(TSIDA ,
QA)−μ and L′ = e(H2(m, r, IDA, TVIDA , TSIDA), R)λ−μC(hD+ν) and will only accept the proof if
hD = H4(C, W ′, K ′, L′, m, σ) holds.

4.2 Efficiency and extensions

Efficiency. Efficiency is one of the major concerns when designing cryptographic schemes. The
efficiency of pairing-based cryptographic schemes is usually evaluated based on the number
of the pairing evaluations, exponentiations and scalar multiplications. However, pairing eval-
uations are far more expensive comparing to exponentiations and scalar multiplications which
makes them the main benchmark when evaluating the efficiency of a pairing-based cryptographic
scheme. Table 1 illustrates the efficiency comparison between our scheme and the only certifi-
cateless undeniable signature scheme which is secure in the strong security model [12]. It depicts
the number of pairing evaluations (pe), exponentiation (ex) (in G2), and scalar multiplications
(sm) (in G1) in both schemes.

As it is shown in Table 1, our scheme is much more efficient in signature generation, proof
generation, and proof verification compared to the one proposed by Duan [12]. Besides, the
length of our confirmation and disavowal proofs are each 2q bits shorter comparing to the ones
in [12].

Furthermore, we can reduce our signature size by using the technique of Katz and Wang [21]
by replacing the l-bit random value r with a single bit while maintaining the same security level.

Convertibility. The signer in our scheme is able to selectively convert her undeniable sig-
natures to universally verifiable ones by omitting the trapdoor functions in the confirma-
tion\disavowal protocols. In order to generate a universally verifiable proof on a valid tuple
(m, σ , IDA, TVIDA , TSIDA), she computes N = e(P, Y ), and O = e(H2(m, r, IDA, TVIDA , TSIDA), Y ),
hSC = H3(N , O, m, σ), and B = Y − hSCSIDA and publishes the proof as (hSC , B). It can be eas-
ily shown that any user in the system is able to verify the validity of the signature σ using the
proof (hSC , B). This technique can be directly applied to generate universally verifiable disavowal
proofs for an invalid signature.

5. Security analysis

In [2], the malicious-but-passive KGC initiates the attack in the Setup algorithm (i.e. before
the system parameters are published). It starts by picking α ∈ Zq at random and setting
the group random generator P = α(H(ID)) where ID is the identity of the target user.
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10 R. Behnia et al.

Evidently, it can easily compute the target user’s private key SID = xIDdID from her pub-
lic key PKID = (TVID = xIDP, TSID = xIDPPub) by computing (1/α)(TSID) = (1/α)(xIDPPub) =
(1/α)(xID(sP)) = (1/α)(xID(sαH(ID)) = xID(sH(ID)) = xIDdID = SID). In our scheme, we pre-
vented this attack by employing the binding method [1] and including the public key of the
user in H1(ID, TVID, TSID). It is easy to see that in the Setup algorithm, before the system pub-
lic parameters are generated and published in the system, the users have not yet computed their
public keys (the system public parameters (e.g. P) are essential for users to set up their keys).
Therefore, the malicious-but-passive KGC does not have knowledge on the public key of the
target user when setting up the system public parameters and hence, it cannot set the value of P
maliciously as in the above attack.

Beside addressing the attack against a malicious-but-passive KGC [2], employment of the
binding method elevates the trust level of the KGC to level 3 in Girault’s hierarchy [14].

We used the pairing-based version of the Jakobsson et al.’s method [20] in the body of our
confirmation protocol and the method of Camenisch and Shoup [4] in the disavowal proto-
col of our scheme to prove the inequality of two discrete logarithms. Similar to [20,23], it is
straightforward to show that both protocols are sound and complete while enjoying the property
of non-transferability, therefore, we do not do it here.

We prove that our scheme is existentially unforgeable and has the property of invisibility
against both Type I and Type II adversaries in the random oracle model. Based on the work of
Galbraith and Mao [13], the notion of anonymity is equivalent to the notion of invisibility in the
sense we stated in our security models. Consequently, we can use the same technique as in [13] to
prove the anonymity of our scheme against Type I and Type II adversaries under the hardness of
the DBDH problem. For the details of proving the equivalency of the invisibility and anonymity
notions, we refer the reader to the proof of Theorem 3 in [13].

We employed Goh and Jarecki’s approach [15] in our scheme so as to avoid using the forking
lemma [24] and obtain a tighter security reduction in our security proofs.

We prove the security of our scheme against a Type I adversary in Theorems 1 and 2, and will
do the same for a Type II adversary in Theorems 3 and 4.

Theorem 1 If there exists a Type I adversary FI that can submit qE private key and partial
private key extraction queries, qCD confirmation and disavowal queries, and qHi queries to ran-
dom oracle Hi for i ∈ {1, 2, 3, 4} and succeed in an existential forgery (in the game defined in
Definition 1) with a non-negligible success probability εFI , then there exists a PPT algorithm
C which can use FI to solve a random instance (P, aP, bP, cP) of the BDH problem with
probability:

εC � εFI − (2qH3 + qCD + 1)2−k

e(qE + 1)(qCD + 1)

Proof Please refer to Appendix. �

Theorem 2 If there exists a Type I adversary DI that can submit qE private key and partial pri-
vate key extraction queries, qCD confirmation and disavowal queries, and qHi queries to random
oracle Hi for i ∈ {1, 2, 3, 4} and be able to breach the invisibility property (win the game defined
in Definition 2) with non-negligible success probability εDI , then there exists a PPT algorithm
C which can use DI to solve a random instance (P, aP, bP, cP, h) of the DBDH problem with
probability:

εC � εDI − (qH3 + qCD)2−k

e(qE + 1)

Proof Please refer to Appendix. �
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Theorem 3 If there exists a Type II adversary FII that can submit qE secret value extraction,
private key and public key replacement queries, qCD confirmation and disavowal queries, and
qHi queries to random oracle Hi for i ∈ {1, 2, 3, 4} and succeed in an existential forgery (win
the game defined in Definition 4) with non-negligible success probability εFII , then there exists
a PPT algorithm C which can use FII to solve a random instance (P, aP, bP, cP) of the BDH
problem with probability:

εC � εFII − (2qH3 + qCD + 1)2−k

e(qE + 1)(qCD + 1)

Proof Please refer to Appendix. �

Theorem 4 If there exists a Type II adversary DII that can submit qE secret value extraction,
public key replacement, and private key extraction queries, qCD confirmation and disavowal
queries, and qHi queries to random oracle Hi for i ∈ {1, 2, 3, 4} and be able to breach the
invisibility property (win the game defined in Definition 5) with non-negligible success prob-
ability εDII , then there exists a PPT algorithm C which can use DII to solve a random instance
(P, aP, bP, cP, h) of the DBDH problem with probability:

εC � εDII − (qH3 + qCD)2−k

e(qE + 1)

Proof Please refer to Appendix. �

6. Conclusion

In this paper, we proffered a new certificateless undeniable signature scheme which has notice-
able efficiency advantages to the only existing scheme that is secure in a strong security models
in the literature [12]. The trust level of KGC in our scheme is equivalent to the trust level of
the Certificate Authority in conventional public key cryptography. Moreover, we proved that our
scheme is secure against both Type I and Type II adversaries, where we also considered a special
Type II adversary (malicious-but-passive KGC) which was introduced by Au et al. [2].
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Appendix

Proof of Theorem 1

We prove that if there exists a Type I adversary FI which can win the game defined in Definition 1, then one can construct
a PPT algorithm C that can run FI as its subroutine to solve a random instance (P, aP, bP, cP) of the BDH problem with
probability at least εC . C works as FI ’s challenger. It starts by initiating the set-up algorithm, and provides FI with the
system wide public parameters params = (q, G1, G2, P, PPub, H1, H2, H3, H4). Where PPub = aP and a is unknown to C.

FI can make queries to random oracles Hi for i = {1, 2, 3, 4} and other oracles as defined in the game of Definition 1.
C responds to these queries by keeping lists κi for i = {1, 2, 3, 4} and a list κ0 in order to keep track of the values of
identity, public key and the corresponding secret value. We assume FI always makes a public key request before a H1
query, and a H1 query before it requests for the partial private key of the user.

Query on H1(ID, TVID, TSID): In order to handle queries on H1 for an identity ID with public key PKID =
(TVID, TSID), C first chooses a random α ∈ Zq and flips a random coin X that is taking the value of 0 with probabil-
ity ϕ1 and the value of 1 with probability 1 − ϕ1 (the value of ϕ1 will be calculated in our proof later). Lastly, C inserts
(ID, TVID, TSID, α, X ) into κ1 and returns H1(ID, TVID, TSID) = α(bP) if X = 1, and H1(ID, TVID, TSID) = αP if X = 0.

Query on H2(m, r, ID, TVID, TSID):To answer queries on H2, C first chooses β ∈ Zq randomly and flips a random coin
Y that takes the value of 0 with probability ϕ2 and the value of 1 with probability 1 − ϕ2 (the value of ϕ2 will be calculated
in our proof later). Lastly, C records (m, r, ID, TVID, TSID, β, Y) in κ2 and returns H2(m, r, ID, TVID, TSID) = β(cP) if
Y = 1, and H2(m, r, ID, TVID, TSID) = βP if Y = 0.

Query on H3 and H4: Queries on H3 and H4 will be handled by C in a random manner, and the outputs will be stored
in κ3 and κ4 respectively.

Public key request: To handle a public key request on an identity ID, C checks if (ID, xID, TVID, TSID) already exists
in κ0, then C returns PKID = (TVID, TSID). Otherwise, it picks a random xID ∈ Zq, computes TVID = xIDP and TSID =
xIDPPub, returns PKID = (TVID, TSID) to FI , and lastly, records (ID, xID, TVID, TSID) in κ0.

Partial private key extraction: Upon receiving an identity ID with public key PKID = (TVID, TSID), C scans κ1 for a
tuple (ID, TVID, TSID, α, X ), if X = 1, C reports failure and aborts the simulation. Otherwise, it outputs the partial private
key as dID = αPPub.

Private key extraction: To handle a private key extraction query on an identity ID with public key PKID =
(TVID, TSID), C scans κ1 for (ID, TVID, TSID, α, X ). If X = 1, B reports failure and aborts the simulation. Otherwise,
it searches κ0 to find (ID, xID, TVID, TSID) and returns the private key of the user ID as SID = αTSID.

Public key replacement: If FI wishes to replace the public key PKID = (TVID, TSID) for identity ID with public
key of its choice PK ′

ID = (TV ′
ID, TS′

ID), C checks κ0 to find (ID, xID, TVID, TSID), if such tuple exists, it will replace it
with (ID, −1, TV ′

ID, TS′
ID), where −1 means that the public key has been replaced. Otherwise, C simply adds a tuple

(ID, −1, TV ′
ID, TS′

ID) to κ0.
Sign query: FI is allowed to query the sign oracle in order to receive valid signatures on any tuple (m, ID, TVID, TSID),

where m is a message to be signed by the signer with identity ID and public key PKID = (TVID, TSID). This oracle is
able to produce valid signatures even for identities where the public key of the user has been replaced. C starts by
picking a random r ∈ {0, 1}l , and scans κ2 for a tuple (m, r, ID, TVID, TSID, . . .). If such tuple already exists in κ2, C picks
another r until no tuple (m, r, ID, TVID, TSID, . . .) is found in κ2. When a proper r is found, C picks a random β ∈ Zq and
inserts (m, r, ID, TVID, TSID, β, 0) (this implies that a H2 query on (m, r, ID, TVID, TSID) will be replied by βP). Lastly, C
computes λ = e(βTSID, QID) and forms the signature as σ = (λ, r).

Confirmation/disavowal query: Upon FI ’s request for a confirmation/disavowal proof transcript on any tuple (m, σ ′ =
(λ′, r′), TVIDS , TSIDS , IDS , IDV ), where IDS is the identity of a signer with public key PKIDS = (TVIDS , TSIDS ) and IDV
is the identity of a designated verifier. C responds in one of the following ways:

(1) If the tuple (m, r′, IDS , TVIDS , TSIDS , . . .) was never queried to H2 oracle, C proceeds as in sign oracle to generate
a valid sub-signature λ, and checks if λ = λ′, it will return the confirmation protocol transcript, and the disavowal
protocol transcript if λ �= λ′.

(2) If (m, r′, IDS , TVIDS , TSIDS , β, Y) exists in κ2, and Y = 0, C will compute the valid sub-signature as λ =
e(βTSIDS , QS). Similar to above, it will output the confirmation protocol transcript if λ = λ′, and the disavowal
protocol transcript if λ �= λ′.

(3) If (m, r′, IDS , TVIDS , TSIDS , β, Y) exists in κ2 and Y = 1, C scans κ1 in order to find a tuple (IDS , TVIDS , TSIDS , α, X ).
If X = 1, C outputs failure and aborts. Otherwise, if X = 0, it will form the valid signature as λ = e(β(cP), TSIDS )α

and output the confirmation protocol transcript if λ = λ′, and the disavowal protocol transcript if λ �= λ′.

C may fail in the simulation of the non-interactive designated verifier proofs of confirmation/disavowal protocol
if a collision occurs in simulating H3 or H4 oracle. The probability for the occurrence of such collision is at most
(qH3 + qCD)2−k , considering qH3 ≈ qH4 .

At the end of the game, FI outputs a tuple (m∗, σ ∗, ID∗, TVID∗ , TSID∗ ) where σ ∗ = (r∗, λ∗) is a valid signature
on message m∗ for identity ID∗ with public key PKID∗ = (TVID∗ , TSID∗ ). In order for FI to win, (ID∗, TVID∗ , TSID∗ )
should have never been queried to the partial private key or the private key extraction oracles. Upon FI ’s suc-
cess, C searches κ1 and κ2 to find (ID∗, α∗, TVID∗ , TSID∗ , X ) (due to the assumption made above, existence of such
tuple is certain in κ1) and (m∗, r∗, ID∗, TVID∗ , TSID∗ , β∗, Y); if X = 0 or Y = 0, C reports failure and aborts. Again,
if (m∗, r∗, ID∗, TVID∗ , TSID∗ , β∗, Y) does not exist in κ2, C will report failure and aborts. In the case that the pub-
lic key PKID∗ = (TVID∗ , TSID∗ ) was never replaced before, C can simply extract the user’s secret value from κ0
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and compute (λ∗)1/xID∗ α∗β∗
as the solution of the random instance (P, aP, bP, cP) of the BDH assumption. On the

other hand, if the public key PKID∗ = (TVID∗ , TSID∗ ) has been replaced before, then for σ ∗ to be valid we know
that e(TVID∗ , PPub) = e(TSID∗ , P). Therefore, based on the knowledge of exponent assumption in [9,16], FI can
extract x since e(xP, aP) = e(x(aP), P), and consequently C outputs (λ∗)1/xα∗β∗

as the solution of the random instance
(P, aP, bP, cP) of the BDH assumption.

In order to compute the success probability of C, we have to consider the cases that C may fail. C can fail in either
the simulation process or in solving the BDH problem after FI outputted the forgery signature. C will fail in the sim-
ulation process if FI queries a partial private key extraction on an identity ID and public key PKID = (TVID, TSID)

where H1(ID, TVID, TSID) = α(bP). C will also fail in simulating the confirmation/disavowal protocol when FI queries
a tuple (m, σ , TVIDS , TSIDS , IDS , IDV ), where H2(m, r, IDS , TVIDS , TSIDS ) = β(cP) and H1(IDS , TSIDS , TVIDS ) = α(bP).
Moreover, C can fail in solving the BDH problem if the forgery tuple (m∗, σ ∗, ID∗, TVID∗ , TSID∗ ) is such that
H1(ID∗, TVID∗ , TSID∗ ) was defined to be αP or H2(m∗, r∗, ID∗, TVID∗ , TSID∗ ) was defined to be βP. Therefore, follow-
ing Coron’s method [8], the probability for C to avoid all the failure states is ϕ

qE
1 (1 − ϕ1) ϕ

qCD
2 (1 − ϕ2) where qE is

the number of partial private key and private key extraction queries and qCD is the number of confirmation/disavowal
queries. By optimizing the probabilities ϕ1 and ϕ2, the probability for C to avoid all the failure states is equal to
1/e(qE + 1)(qCD + 1). Where e is the base of natural logarithm. There is also the probability that FI never queried
H2(m∗, r∗, ID∗, TVID∗ , TSID∗ ), this may occur with probability 2−k . It is possible that FI produced the forgery sig-
nature σ ∗ and proved its validity where it did not use the valid private key SID∗ , this case may only happen if
H3(W , N , O, m∗, σ ∗) is set as a particular value. This case may only happen with probability qH3 2−k . As mentioned
above, C may also fail in simulating the confirmation and disavowal protocol if a collision occurs in the domain of
qH3 , this incident may happen with probability (qH3 + qCD)2−k . Following the proof, C’s success probability is at least
(εFI − (2qH3 + qCD + 1)2−k)/e(qE + 1)(qCD + 1).

Proof of Theorem 2

We prove that if there exists a Type I adversary DI which is able to win the game defined in Definition 2 with probability
εDI , then one can build another algorithm C which is able to solve a random instance (P, aP, bP, cP, h) of the DBDH
problem with probability εC . C acts as D′

I s challenger, it starts by initiating the set-up algorithm as in Proof of Theorem 1
wherein, PPub = aP and a is unknown to C. DI starts by querying different oracles as explained in Definition 2. We
assume DI always makes a public key request before a H1 query, and a H1 query before it requests for the partial private
key of the user. Similar to the Proof of Theorem 1, C answers to DI queries by using lists κi for i = {1, 2, 3, 4} and a list
κ0 in order to keep track of the values of identity, public keys and the corresponding secret value.

Query on H1(ID, TVID, TSID): Queries to H1 are handled identical to Proof of Theorem 1.
Query on H2(m, r, ID, TVID, TSID): To answer queries on H2, C scans κ2 to find (m, r, ID, TVID, TSID, β, Y), If such

tuples exists, C outputs βP when Y = 0 and β(cP) when Y = 1. Otherwise, if no such tuple exists in κ2, C picks a random
β ∈ Zq, returns βP to DI , and inserts (m, r, ID, TVID, TSID, β, 0) into κ2.

Queries on H3 and H4: Queries to H3 and H4 are handled identical to Proof of Theorem 1.
Queries on public key, partial private key extract, private key, public key replacement, and sign oracles are handled

identical to Proof of Theorem 1.
Confirmation/disavowal query: Due to the behaviour of H2, C is able to calculate a valid signature σ in order to

compare with any signature σ ′ queried to the confirmation/disavowal oracle and generate confirmation (disavowal)
proofs consistent with validity (invalidity) of σ ′.

Similar to Proof of Theorem 1, a collision may occur in the domain of H3 or H4 oracles when simulating
confirmation/disavowal protocol.

After the first round of queries, DI outputs a challenge tuple (m∗, ID∗, TVID∗ , TSID∗ ), where m∗ is a message to be
signed, ID∗ is the identity of a signer, and PKID∗ = (TVID∗ , TSID∗ ) is the corresponding public key. If the public key
has been replaced before, then, similar to Proof of Theorem 1, and based on the knowledge of exponent assumption
[9,16], DI should have knowledge on the corresponding secret value and can provide it for C. Otherwise, if PKID∗ is the
original public key of the signer, then C can easily retrieve the value of xID∗ from κ0. Note that (ID∗, TVID∗ , TSID∗ ) was
never queried to the partial private key or the private key extraction oracles. C scans κ1 to find (ID∗, TVID∗ , TSID∗ , α, X )

(due to the assumption made above, we know that such tuple exists in κ1). If X = 0, C aborts and outputs failure.
Otherwise, if X = 1, C proceeds by picking a random r ∈ {0, 1}l and checking if (m∗, r, ID∗, TVID∗ , TSID∗ , . . .) exists κ2.
If it does, C picks another r until it finds an appropriate r whereas, no such tuple (m∗, r, ID∗, TVID∗ , TSID∗ , . . .) exists in
κ2. Thereupon, C defines H2(m∗, r, ID∗, TVID∗ , TSID∗ ) as β(cP) and records (m∗, r, ID∗, TVID∗ , TSID∗ , β, 1) in κ2. Lastly,
C computes λ∗ = hxID∗ αβ and sets the challenge signature as σ ∗ = (r, λ∗).

DI starts the second round of queries, however, this time, DI is withheld from a partial private key or private key
extraction query on (ID∗, TVID∗ , TSID∗ ), sign query on (m∗, r, ID∗, TVID∗ , TSID∗ ), or confirmation/disavowal query on
(m∗, σ ∗, ID∗, TVID∗ , TSID∗ ).

After the second round of queries, DI outputs its decision bit b ∈ {0, 1}. If b = 0, it indicates that σ ∗ is an invalid
signature, consequently, C outputs 0 to declare that (P, aP, bP, cP, h) is an invalid DBDH tuple. If b = 1, it indicates that
σ ∗ is a valid signature and consequently, C outputs 1 to declare that (P, aP, bP, cP, h) is a valid DBDH tuple.

In order to compute C’s success probability, we first consider the situations that C might fail. C may fail in partial
private key or private key extraction queries where H1(ID, TVID, TSID) was defined to be α(bP). C may also fail in the
challenge phase where the challenge identity ID∗ is such that H1(ID∗, TVID∗ , TSID∗ ) was defined as αP. Consequently,
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the probability for C not to fail is ϕ
qE
1 (1 − ϕ1) which is maximized at 1/e(qE + 1), when the optimal value of ϕ1 is used.

Similar to Proof of Theorem 1, C may also fail in simulation of the confirmation and disavowal protocol (in a case of
collision) with probability (qH3 + qCD)2−k . Following the proof, given εDI as the success probability of DI , C’s success
probability is at least (εDI − (qH3 + qCD)2−k)/e(qE + 1).

Proof of Theorem 3

We prove that if there exists a Type II adversary FII that is able to win the game defined in Definition 4 with
probability εFII , then a PPT algorithm C can be built that runs FII as its subroutine and is able to solve a ran-
dom instance (P, aP, bP, cP) of the BDH problem with probability εC . C plays as FII ’s challenger, and starts by
initiating the set-up algorithm and providing FII with the master secret key s and the system’s public parameters
params = (q, G1, G2, P, H1, H2, H3, H4). Evidently, PPub is not included in the public parameters as it can be easily
computed by FII .

FII performs polynomially bounded number of queries as defined in Definition 4. As in Theorem 1, C handles these
queries by keeping lists κi for i ∈ {1, 2, 3, 4}, and a list κ0 in order to keep track of the values of identity, secret value,
and the corresponding public keys of users in the system. We assume FII makes a public key request before a H1 query.

Query on H1(ID, TVID, TSID): To answer such queries on H1 for an identity ID with public key PKID = (TVID, TSID),
C picks a random α ∈ Zq, inserts (ID, TVID, TSID, α) in κ1, and returns QID = α(bP) to FII .

Query on H2(m, r, ID, TVID, TSID): In order to answer queries on H2, C first picks a random β ∈ Zq and flips a
coin Y that is truly random taking the value of 0 with probability ϕ2 and the value of 1 with probability 1 − ϕ2
(the value of ϕ2 will be computed later in our proof). Next, C inserts (m, r, ID, TVID, TSID, β, Y) into κ2 and returns
H2(m, r, ID, TVID, TSID) = β(cP) if Y = 1 and H2(m, r, ID, TVID, TSID) = βP if Y = 0.

Query on H3 and H4: Queries on H3 and H4 will be handled by C in a random manner and the outputs will be stored
in κ3 and κ4, respectively.

Public key request: Upon submitting an identity ID, C picks a random δ ∈ Zq and flips a coin X that is truly random
taking the value of 0 with probability ϕ1 and the value of 1 with probability 1 − ϕ1 (the value of ϕ1 will be computed
later in our proof). If X = 0, C sets the public key as PKID = (TVID = δP, TSID = δPPub). Otherwise, if X = 1, C sets
the public key as PKID = (TVID = δ(aP), TSID = sδ(aP)). In both cases, C inserts the tuple (ID, δ, TVID, TSID, X ) in κ0.

Secret value extraction: In order to respond to a secret key extraction query on an identity ID with public key PKID =
(TVID, TSID), C scans κ0 for (ID, δ, TVID, TSID, X ). If X = 1, C reports failure and aborts the simulation. Otherwise, it
returns δ as the secret value of the user.

Private key extraction: In order to respond to a private key extraction query on identity ID with public key PKID =
(TVID, TSID), C scans κ0 for (ID, δ, TVID, TSID, X ). If X = 1, C reports failure and aborts the simulation. Otherwise, it
searches κ1 to find (ID, TVID, TSID, α) and returns the private key of the user as SID = sδQID.

Public key replacement: If FII wishes to replace the public key PKID = (TVID, TSID) for identity ID with public
key of its choice PK ′

ID = (TV ′
ID, TS′

ID), C checks κ0 to find (ID, xID, TVID, TSID, . . .), if such tuple exists, it will replace
it with (ID, −1, TV ′

ID, TS′
ID, . . .), where −1 means that the public keys have been replaced. Otherwise, C adds a tuple

(ID, −1, TV ′
ID, TS′

ID, . . .) to κ0.
Sign query: In order to respond to a signature query on any tuple (m, ID, TVID, TSID), C picks a random r ∈ {0, 1}l and

checks if κ2 already contains (m, r, ID, TVID, TSID, . . .), if yes, it proceeds until it finds an appropriate r where no such
tuple (m, r, ID, TVID, TSID, . . .) exists in κ2. When such an acceptable r is found, C picks a random β ∈ Zq and inserts
(m, r, ID, TVID, TSID, β, 0) in κ2, implying that the value of H2(m, r, ID, TVID, TSID) is set as βP. Lastly, C computes
λ = e(βTSID, QID) and forms the signature σ = (r, λ).

Confirmation/disavowal query: Upon FII ’s request for a confirmation/disavowal proof transcript on any tuple
(m, σ ′ = (r, λ′), TVIDS , TSIDS , IDS , IDV ), where IDS is the identity of a signer with public key PKIDS = (TVIDS , TSIDS )

and IDV is the identity of a designated verifier. C responds in one of the following ways:

(1) If the tuple (m, r, IDS , TVIDS , TSIDS , . . .) was never queried to H2 oracle, C proceeds as in sign oracle to generate
a valid sub-signature λ, and checks if λ = λ′, it will return the confirmation protocol transcript, and the disavowal
protocol transcript if λ �= λ′.

(2) If (m, r, IDS , TVIDS , TSIDS , β, Y) exists in κ2 and Y = 0, C will compute the valid sub-signature as λ =
e(βTSIDS , QS). Similar to above, it will output the confirmation protocol transcript if λ = λ′, and the disavowal
protocol transcript if λ �= λ′.

(3) If (m, r, IDS , TVIDS , TSIDS , β, Y) exists in κ2 and Y = 1, C scans κ0 in order to find a tuple (IDS , δ, TVIDS , TSIDS , X ). If
X = 1, C outputs failure and aborts. Otherwise, if X = 0, it will form the valid sub-signature as λ = e(β(cP), sQS)δ

and output the confirmation protocol transcript if λ = λ′, and the disavowal protocol transcript if λ �= λ′.

C may fail in the simulation of the non-interactive designated verifier proofs of confirmation/disavowal protocols if a
collision occurs in simulating H3 or H4 oracle. The probability for the occurrence of such collision is at most (qH3 +
qCD)2−k , considering qH3 ≈ qH4 .

At the end of the game, FII outputs a tuple (m∗, σ ∗, ID∗, TVID∗ , TSID∗ ), whereas σ ∗ = (r∗, λ∗) is a valid sig-
nature on message m∗ for a signer with identity ID∗ and public key PKID∗ = (TVID∗ , TSID∗ ). In order for FII to
win, (ID∗, TVID∗ , TSID∗ ) should have not been queried to secret value extraction, public key replacement or private
key extraction oracles. Upon FII ’s success, C scans κ0 and κ2 in order to find tuples (ID∗, δ∗, TVID∗ , TSID∗ , X ) and
(m∗, r∗, ID∗, TVID∗ , TSID∗ , β∗, Y), respectively. Then if X = 0 or Y = 0, C outputs failure and aborts. Also if no such
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tuple (m∗, r∗, ID∗, TVID∗ , TSID∗ , β∗, Y) exists in κ2, C will output failure and aborts the simulation. Otherwise, if σ ∗ is a

valid signature, C outputs (λ∗)
1

sαβδ as the solution of the random instance (P, aP, bP, cP) of the BDH problem.
In order to compute the success probability of C, we have to consider the cases that C may fail. C can fail in either

the simulation process or in solving the BDH problem after FII outputted the forgery signature. C will fail in the sim-
ulation process if FII initiates a secret value or private key extraction query on an identity ID where TVID = δ(aP)

and TSID = sδ(aP). C will also fail in simulating the confirmation/disavowal protocol when FII queries a tuple
(m, σ , TVIDS , TSIDS , IDS , IDV ), where H2(m, r, ID, TVIDS , TSIDS ) = β(cP) and TVIDS = δ(aP) and TSIDS = sδ(aP). C
will also fail if the forgery tuple (m∗, σ ∗, ID∗, TVID∗ , TSID∗ ) is such that TVID∗ and TSID∗ were defined to be δP and
δPPub, respectively. Besides, C will again fail, if the forgery tuple is such that H2(m∗, r∗, ID∗, TVID∗ , TSID∗ ) was defined
as βP. The probability for C to avoid all the failure states is ϕ

qE
1 (1 − ϕ1) ϕ

qCD
2 (1 − ϕ2), whereas qE is the number of secret

value and private key extraction queries and qCD is the number of confirmation/disavowal queries. By maximizing the
probabilities ϕ1 and ϕ2, the success probability of C would be 1/e(qE + 1)(qCD + 1). Similar to the proof of Theorem 1,
considering the probability that (m∗, r∗, ID∗, TVID∗ , TSID∗ ) was never queried to H2 oracle, the probability that FII did
not use the valid private key SID∗ when generating the forgery signature σ ∗, and the probability of failure in simulating the
confirmation/disavowal protocol; C success probability is at least (εFII − (2qH3 + qCD + 1)2−k)/e(qE + 1)(qCD + 1).

Proof of Theorem 4

We prove that if there exists a Type II adversary DII which is able to win the game defined in Definition 5 with probability
εDII , then one can build another PPT algorithm C which is able to solve a random instance (P, aP, bP, cP, h) of the DBDH
problem with probability εC . C acts as DII ’s challenger, it starts by initiating the setup algorithm as in Proof of Theorem 3.
DII starts by querying different oracles as explained in Definition 5. We assume DII makes a public key request before
a H1 query. Similar to Proof of Theorem 3, C answers to DII queries by using lists κi for i = {1, 2, 3, 4} and a list κ0 in
order to keep track of the values of identity, secret value, and the corresponding public keys of users in the system.

Query on H1(ID, TVID, TSID): Queries to H1 are handled identical to Proof of Theorem 3.
Query on H2(m, r, ID, TVID, TSID): In order to answer queries on H2, C scans κ2 to find (m, r, ID, TVID, TSID, β, Y),

If such tuples exists, C outputs βP when Y = 0, and β(cP) when Y = 1. Otherwise, if no such tuple exists in κ2, C first
picks a random β ∈ Zq, returns βP to DII , and inserts (m, r, ID, TVID, TSID, β, 0) into κ2.

Queries on H3 and H4: Queries to H3 and H4 are handled identical to Proof of Theorem 3.
Queries on public key, secret value extraction, private key extraction, public key replacement, and sign oracles are

handled identical to Proof of Theorem 3.
Confirmation/disavowal query: Due to the behaviour of H2 oracle, C is able to calculate valid signature σ in order

to compare with any signature σ ′ queried to the confirmation/disavowal oracle and generate confirmation (disavowal)
proofs consistent with validity (invalidity) of σ ′.

Similar to Proof of Theorem 3, a collision may occur in the domain of H3 or H4 oracle when simulating
confirmation/disavowal protocol.

After the first round of queries, DII outputs a challenge tuple (m∗, ID∗, TVID∗ , TSID∗ ), where m∗ is a message to
be signed, ID∗ is the identity of a signer, and PKID∗ = (TVID∗ , TSID∗ ) is the corresponding public key. Note that
(ID∗, TVID∗ , TSID∗ ) should have never been queried to the secret value extraction, public key replacement or the private
key extraction oracles. C scans κ0 to find (ID∗, δ, TVID∗ , TSID∗ , X ). If X = 0, C aborts and outputs failure. Otherwise, if
X = 1, C proceeds by picking a random r ∈ {0, 1}l and checking if (m∗, r, ID∗, TVID∗ , TSID∗ , . . .) exists κ2. If it does, C
picks another r until it finds an appropriate r whereas, no such tuple (m∗, r, ID∗, TVID∗ , TSID∗ , . . .) exists in κ2. Thereupon,
C defines H2(m∗, r, ID∗, TVID∗ , TSID∗ ) as β(cP) and records (m∗, r, ID∗, TVID∗ , TSID∗ , β, 1) in κ2. Lastly, C computes
λ∗ = hsδαβ and sets the challenge signature as σ ∗ = (r, λ∗).

DII starts the second round of queries, however, this time DII is withheld from a secret value extraction, public
key replacement or private key extraction query on (ID∗, TVID∗ , TSID∗ ), sign query on (m∗, r, ID∗, TVID∗ , TSID∗ ), or
confirmation/disavowal query on (m∗, σ ∗, ID∗, TVID∗ , TSID∗ ).

After the second round of queries, DII outputs its decision bit b ∈ {0, 1}. If b = 0, indicates that σ ∗ is an invalid
signature, consequently, C outputs 0 to declare that (P, aP, bP, cP, h) is an invalid DBDH tuple. If b = 1, it indicates that
σ ∗ is a valid signature and consequently, C outputs 1 to declare that (P, aP, bP, cP, h) is a valid DBDH tuple.

In order to assess C’s success probability, we first consider the situations that C might fail. C may fail if DII initiate a
secret value or private key extraction query on an identity ID where TVID = δ(aP) and TSID = sδ(aP). C might also fail
if the challenge identity ID∗ is such that the public key is set as PKID∗ = (TVID∗ = βP, TSID∗ = βPPub). Consequently,
the probability for C not to fail is ϕ

qE
1 (1 − ϕ1) which is maximized at 1/e(qE + 1) when the optimal value of ϕ1 is

used. Similar to Proof of Theorem 3, C may also fail in simulation of the confirmation and disavowal protocols with
probability (qH3 + qCD)2−k . Following the proof, given εDII as the success probability of DII , C’s success probability is
at least (εDII − (qH3 + qCD)2−k)/e(qE + 1).
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