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Abstract—Authentication and integrity are fundamental
security services that are critical for any viable system.
However, some of the emerging systems (e.g., smart grids,
aerial drones) are delay-sensitive, and therefore their safe
and reliable operation requires delay-aware authentication
mechanisms. Unfortunately, the current state-of-the-art au-
thentication mechanisms either incur heavy computations or
lack scalability for such large and distributed systems. Hence,
there is a crucial need for digital signature schemes that can
satisfy the requirements of delay-aware applications.

In this paper, we propose a new digital signature scheme
that we refer to as Compact Energy and Delay-aware Authen-
tication (CEDA). In CEDA, signature generation and veri�ca-
tion only require a small-constant number of multiplications
and Pseudo Random Function (PRF) calls. Therefore, it
achieves the lowest end-to-end delay among its counterparts.
Our implementation results on an ARM processor and com-
modity hardware show that CEDA has the most e�cient
signature generation on both platforms, while o�ering a
fast signature veri�cation. Among its delay-aware counter-
parts, CEDA has a smaller private key with a constant-size
signature. All these advantages are achieved with the cost
of a larger public key. This is a highly favorable trade-o�
for applications wherein the veri�er is not memory-limited.
We open-sourced our implementation of CEDA to enable its
broad testing and adaptation.

Index Terms—Applied cryptography, delay-aware authenti-
cation, real-time networks, digital signatures.

I. Introduction

Broadcast authentication is an essential security service

for various important systems, where the authenticity of

messages should be veri�ed by multiple receivers. How-

ever, broadcast authentication is a challenging problem for

large and distributed systems (e.g. smart grids, vehicular

networks, IoT systems), especially if the system has real-time

authentication requirements [1]. For instance, as mentioned

in relevant vehicular network standards (e.g., [2], [3]), a

single car might broadcast a very large number of messages

(e.g., up to 500-1000 messages) per second, where all these

messages should be veri�ed by other vehicles/devices in the

vicinity. Such messages may include directives for sudden

brakes/turns, which require the timely reaction of the re-

ceiving parties. This also brings scalability problems since a

vehicular network might be composed of a large number of

components (e.g., vehicles, infrastructure, devices). Similarly,

in power grid/smart grid systems, some critical command

and control messages must be veri�ed by a large number of

peripheral devices [4], [5] in real-time. Besides such real-time

applications, an e�cient authentication mechanism is also

greatly needed by recently emerging IoT applications that

involve resource-limited devices (e.g., small aerial drones).

A. Problem Statement

The current state-of-the-art authentication mechanisms

might not be able to fully meet the demands of large

and distributed time-critical applications (e.g., smart-grid,

vehicular/drone networks). That is, Message Authentication

Codes (MACs) are highly e�cient but they lack the necessary

scalability for large and distributed systems as well as public

veri�ability and non-repudiation properties. Digital signature

schemes rely on public key infrastructures, and therefore can

enable scalable authentication for large-distributed systems.

However, unlike MACs, they generally require highly expen-

sive operations at the signer’s and/or veri�er’s side. For in-

stance, standard signatures (e.g., RSA [6], ECDSA [7]) require

expensive operations such as exponentiation or elliptic curve

scalar multiplications, which have been shown to be highly

costly for some delay-aware applications (e.g., smart-grid [8],

[9], [10], vehicular networks [11], [12], [3], [2]).

Delay-aware signatures such as SCRA [13] and RA [10]

were proposed, however both of these schemes incur very

large private keys due to the pre-computation tables at the

signer’s side. Moreover, RA requires messages to have speci�c

pre-de�ned structures, which might not be the case for

various real-life applications. One-time signatures [14] and

some of their variants (e.g., [9], [15]) o�er very fast signa-

ture generation and veri�cation, however they have large

signature sizes. Moreover, the private-public key pair must be

continuously renewed, whose overhead may not be practical

for certain applications. Signature schemes that incur linear

token/key storage (e.g. online/o�ine signatures [16]) are also

not suitable for applications with memory-limited devices. Ef-

�cient signature generation and veri�cation can be achieved

by delayed key disclosure methods [17] and amortized signa-

tures [18]. However, these methods rely on packet bu�ering,

and therefore, highly intolerant to packet losses. Moreover,

they lack the immediate veri�cation critically required by

delay-aware applications. In Section II, we provide a detailed

overview of the related works that are most relevant to ours.

There is a signi�cant need for a compact and light-weight
digital signature scheme that can achieve high-speed signature
generation and veri�cation for time-critical systems.



TABLE I: Experimental performance comparison of CEDA and its counterparts on ARM Cortex A53.

Scheme Signer Transmission Veri�er End-to-EndSignature Generation
Time (ms)

Private Key
(Byte)

Signature
Size (Byte)

Signature Veri�cation
Time (ms)

Public Key
(Byte) Delay (ms)

RSA 237.15 768 416 1.33 384 238.48

ECDSA 9.33 32 64 12.10 32 21.43

BPV-ECDSA 1.75 10272 64 12.10 32 13.85

Ed25519 2.25 32 64 6.79 32 9.04

SCRA-C-RSA 2.72 2000000 432 4.42 384 7.14

CEDA 1.59 416 416 2.98 393600 4.57

B. Our Contributions

In this paper, we developed a new real-time digital signa-

ture scheme that we refer to as Compact Energy and Delay-
aware Authentication (CEDA). We summarize the desirable

properties of CEDA as follows (Table I demonstrates the ex-

perimental comparison between CEDA and its counterparts

on ARM Cortex A53).

• Fast Signing: The signature generation of CEDA does

not require any expensive operation such as expo-

nentiation over large integers or elliptic curve scalar

multiplication. More speci�cally, the signing algorithm

in CEDA only requires an exponentiation over a small

modulus and cryptographic hash function calls that

makes it the fastest among its counterparts. For instance,

as shown in Tables I and IV, CEDA can generate up to

18,070 and 628 signatures per second on a commodity

hardware and IoT device, respectively.

• Low End-to-end Delay: CEDA enjoys from the fastest

signing algorithm and the second fastest veri�cation

algorithm among its counterparts. That is, the veri�-

cation only requires an exponentiation over a small

modulus and a few multiplications. More speci�cally, as

shown in Table I, CEDA is 1.56× faster than its most

e�cient counterpart (SCRA in [13]) and 4.69× faster

than ECDSA, in terms of end-to-end delay.

• Eliminate the Pre-computation Components from Signer:
Some applications (e.g. IoT, smart-grids) may require

memory-limited devices to issue signatures. Unlike

some existing alternatives (e.g., [19], [13], [10], [20],

[21], [16]), CEDA does not require any pre-computation

table or tokens to be stored at signer’s side. For instance,

SCRA-C-RSA [13] and ECDSA with pre-computation

[19] require storing a private key of size 2 MB and

10 KB on the signer’s side, respectively. CEDA has a

constant private key of size 416 Byte that is smaller

than traditional RSA signature [6] and a signature size

identical to the traditional RSA (see Table I).

• Immediate Veri�cation: Unlike some broadcast authenti-

cation mechanisms (e.g. [17]), CEDA can achieve imme-

diate veri�cation without the need of packet bu�ering

or time synchronization.

• Limitation: The main limitation of CEDA is its large public

key size (e.g., 393 KB for κ = 128-bit security) compared to its

alternatives. However, in many delay-aware applications (e.g.,

aerial drones, vehicular networks, smart-grid), the verifying

devices (e.g., cars, UAVs, command centers) are potentially

more than capable of storing such public keys. Therefore, by

providing the lowest end-to-end cryptographic delay with

small private key sizes, CEDA is expected to o�er an ideal

choice for time-critical networks, in which a very high-speed

authentication is a crucial requirement to ensure a safe and

reliable operation.

II. Related Work

In this section, we provide an overview of e�cient digital

signature schemes and authentication mechanisms that are

most relevant to our work.

Standard Digital Signatures: Standard signatures (e.g.,

RSA [6], ECDSA [7]) require expensive operations, such as

exponentiation over a large modulus, and elliptic curve scalar

multiplication. Hence, they are not suitable for resource-

limited devices and time-critical applications. Improvement

via special elliptic curves [22] and/or pre-computation tech-

niques [19] are possible. However, such improvements may

not fully meet the demands of highly time-critical applica-

tions (see Section VI for detailed analysis).

Delay-Aware Digital Signatures: Real-time signatures, spe-

cially designed for smart grids and vehicular networks were

proposed in [13], [10]. Such schemes provide fast signature

generation and veri�cation to meet the requirements of time-

critical networks. However, RA [10] relies on a pre-de�ned

structure of messages, which may not be applicable for many

real-life scenarios. Moreover, both of these signature schemes

require large private key sizes (up to 2MB [13]), that may not

be feasible for many resource-limited signers.

One-time Signatures (OTS) and Their Extensions: Hash-

based signatures achieve post-quantum security [23]. Earlier

one-time hash-based signatures (e.g., HORS [14]) o�er fast

signing and veri�cation but have very large signature sizes

(e.g., 2-5 KB). Moreover, a private/public key pair can only

be used once and therefore, must be renewed frequently.

This continuous renewal requires the distribution of new

public keys and may be impractical for real-life applications

where each new public key should be signed by a certi�cate

authority and veri�ed by the veri�er. Di�erent performance

and security trade-o�s, such as low storage with very high

computational cost [15] and time valid OTS such as TV-

HORS [9], have been o�ered based on HORS. Despite their



bene�ts, time-valid approaches su�er from performance and

security penalties due to time-synchronization requirements

and low tolerance for packet loss. Moreover, the use of low-

security parameters might not be ideal for some security-

critical delay-aware applications even with potential time

constraints. Multiple-time hash-based signatures (e.g., [24])

rely on Merkle-trees [25] with a signer state [26] to be able

to sign several messages. Recently, stateless signatures (e.g.,

SPHINCS [23]) have been proposed. However, these schemes

have extremely large signatures (up to 41 KB) and expensive

signing algorithms for low-end devices [27].

Online/O�line Signatures: Online/o�ine signatures (e.g.

[21], [16], [28]) pre-compute a token for each message to

be signed at the o�ine phase, and then use it to compute

a signature on a message e�ciently at the online phase.

However, these schemes can use a private/public key pair

only once, and therefore introduce a linear public key size.

Hence, all such online/o�ine signatures incur linear storage

with respect to the number of messages to be signed, which

might not be practical for resource-limited devices. Moreover,

the tokens must be renewed continuously as depleted, which

introduces further computational overhead. Therefore, they

may not be practical for real-time networks or IoT devices

as considered in this work.

Delayed Key Disclosure and Amortized Signatures:
Delayed key disclosure methods [17] introduce an asymmetry

between the signer and the veri�er via a time factor, and

therefore can achieve highly e�cient signing and veri�cation

via only Message Authentication Codes. However, they re-

quire time synchronization among entities, packet bu�ering,

and introduce potential packet loss risks. Therefore, such

schemes cannot provide immediate veri�cation, which is a

critical requirement for real-time networks. Similarly, achiev-

ing time synchronization for a large distributed system might

be di�cult. In signature amortization techniques (e.g., [18]),

the signer generates a signature over a set of messages to

reduce the cost. However, this also requires packet bu�ering

and introduces potential packet loss risks. Moreover, amor-

tized signatures require all related messages in a single set to

be received until a message could be veri�ed, and therefore

they lack immediate veri�cation.

III. Preliminaries

We �rst outline the notation in Table II and then describe

our building blocks.

De�nition 1. A digital signature scheme is a tuple of three

algorithms SGN = (Kg,Sig,Ver) de�ned as follows.

– (sk ,PK ) ← SGN.Kg(1κ): Given the security parame-

ter κ, this algorithm outputs the private/public key pair

(sk ,PK ).

– σ ← SGN.Sig(m, sk): Given a message to be signed

m and the private key of the signer (sk ), this algorithm

outputs the signature σ.

TABLE II: Notation followed to describe schemes.

(t, k) HORS parameters (k out of t)

κ Security parameter

N RSA modulus

p, q large primes

d RSA large exponent

e RSA small exponent

z CEDA private key

si Random components generated deterministically by z
Vi CEDA public key

r One-time randomness

c Counter

PRF Pseudo Random Function

PRF1
¶ PRF1 : {0, 1}∗ → {0, 1}κ

PRF2
¶ PRF2 : {0, 1}∗ → {0, 1}κ

H Cryptographic hash function

H1 H1 : {0, 1}∗ → {0, 1}l1 where l1 = 2 · κ
H2 H2 : {0, 1}∗ → {0, 1}l2 where l2 = k · log2 t

¶ PRF1 and PRF2 are two di�erent PRF instantiations with the

same domain.

– {0, 1} ← SGN.Ver(m,σ,PK ): Given a message-

signature pair to be veri�ed (m,σ), and the public key

of the signer (PK ), this algorithm outputs a bit that

indicates if the signature is veri�ed (1) or not (0).

De�nition 2. Existential Unforgeability under Chosen Mes-

sage Attack (EU-CMA) experiment ExptEU−CMA
SGN is de�ned

as follows.

– (sk ,PK )← SGN.Kg(1κ)
– (m∗, σ∗)← ASGN.Sig(·)(PK )
– If 1← SGN.Ver(m∗, σ∗,PK ) and m∗ was not queried

to SGN.Sig(·), return 1, else, return 0.

The EMU-CMA advantage of A is de�ned as AdvEU-CMA
SGN =

Pr[ExptEU−CMA
SGN = 1].

Given a one-way function f , HORS signature scheme is

de�ned in the following de�nition.

De�nition 3. HORS signature scheme consists of three

algorithms HORS = (Kg,Sig,Ver) de�ned as follow.

– (sk ,PK ) ← HORS.Kg(l, k, t): Given parameters l, k
and t, this algorithm generates t random l-bit strings

(s1, s2 . . . , st), computes vi = f(si) for 1 ≤ i ≤ t and

outputs sk = (s1, s2 . . . , st) and PK = (v1, v2 . . . , vt).

– σ ← HORS.Sig(m, sk): Given a message m to be

signed, this algorithm computes h = H(m) and splits

h into k substrings (h1, h2, . . . , hk), each of length

log2 t. The substrings are interpreted as integers ij
for 1 ≤ j ≤ k and used to generate a signature as

σ = (si1 , si2 , . . . , sik).

– {0, 1} ← HORS.Ver(m,σ,PK ): Given a message-

signature pair (m,σ = (si′1
, s
′

i2
, . . . , s

′

ik
)), this algorithm

computes h = H(m) and splits h into k substrings

(h1, h2, . . . , hk). The substrings are interpreted as inte-

gers ij for 1 ≤ j ≤ k. Returns 1 if for each j, f(s
′

j) = vij
and returns 0 otherwise.

De�nition 4. A trapdoor permutation function family is a

tuple of algorithms π = (Gen,Eval,Invert) as follows.



– (i, td) ← π.Gen(1κ): Given the security parameter κ,

this algorithm outputs a pair (i, td), where i is the index

of a particular permutation πi de�ned over some domain

Di, and td is the trapdoor that allows for the inversion

of πi.
– y ← π.Eval(i, x): Given an index i and x ∈ Di, this

algorithm outputs an element y ∈ Di. More speci�cally,

for all i output by Gen, the function Eval(i, ·) : Di →
Di is a permutation.

– x← π.Invert(td, y): Given a trapdoor td and y, this

algorithm outputs the element x ∈ Di.

The correctness of a trapdoor permutation family requires

that for all κ, all (i, td) output by Gen, and all x ∈ Di, we

have x← Invert(td, y).

De�nition 5. An RSA permutation function is de�ned as a

tuple RSA = (GenRSA,EvalRSA,InvertRSA) as below.

– 〈(N, e), (N, d)〉 ← GenRSA(1κ): Given the security

parameter κ, it chooses two large primes p and q and

forms their product N ← p · q. It then computes

φ(N)← (p−1)·(q−1), chooses e that is relatively prime

to φ(N) and computes d where e ·d ≡ 1 mod φ(N). It

outputs (N, e) as the index i, and (N, d) as the trapdoor

td. The domain DN,e is Z∗N .

– y ← EvalRSA((N, e), x): Given the index (N, e) and a

random element x ∈ Z∗N , this algorithm computes and

outputs y ← xe mod N .

– x ← InvertRSA((N, d), y): Given (N, d) and an ele-

ment y, it computes the inversion as x← yd mod N .

De�nition 6. Inverting the RSA permutation function de-

�ned in De�nition 5 without having the knowledge of the

trapdoor information td is known to be a hard problem

[29]. Given, a public key (N, e) and x ∈ Zq the advan-

tage of the adversary A is de�ned as AdvRSA = Pr[y ←
EvalRSA((N, e), x);x← A(κ,N,e)(y)] < ε.

• Security and System Model: The standard security notion

that captures our threat model is EU-CMA as in De�nition 2

Our system model is based on Public Key Cryptography

broadcast authentication model which includes two types

of entities (i.e., the signer and the veri�er). As depicted in

Figure 1, we assume that a key generation server, uploads

the private key to the signer (o�ine) and responds to the

public key queries by the veri�ers in the system.

IV. Proposed Scheme

The idea behind the proposed scheme is to leverage

the multiplicative property of RSA trapdoor permutation

function (De�nition 5) to transform one-time HORS [14]

signatures into an (practically) unbounded time signature.

Speci�cally, our private key consists of t randomly generated

values si (that can be deterministically generated with a

seed) and the corresponding public key consists of all Vi ←
(EvalRSA((N, e), si))

−1 mod N where i ∈ {1, . . . , t}. To

sign a message, we compute γ by combining a subset of

k selected one-time signature components (i.e., si’s whose

indexes (i1, . . . , ik) are obtained from the message hash

output, as in HORS) along with a one-time randomness r to

prevent their disclosure. Recall that the release of the private

key components with each signature is the main reason

that HORS is a one-time signature. We then compute R ←
EvalRSA((N, e), r) and set the CEDA signature as σ =
(R, γ). Upon receiving the signature, the veri�er �rst multi-

plies the subset of corresponding public keys from PK and

calculates Γ. The veri�er checks R = EvalRSA((N, e), γ) ·Γ,

and returns valid (1) if it holds; otherwise returns invalid (0).

Our scheme consists of the following algorithms.

(sk ,PK )← CEDA.Kg(1κ): Given the security parameter κ,

this algorithm works as follows:

1) Select HORS parameters (t, k) as in De�nition 3 and

run 〈(N, e), (N, d)〉 ← GenRSA(1κ) to set sk ′ = (N, d)
and PK ′ = (N, e) as in De�nition 5.

2) Pick z
$← {0, 1}κ and compute si ← PRF1(z||i) for

i = 1, . . . , t.
3) Generate the public keys Vi ← EvalRSA(PK ′, si) for

i = 1, . . . , t and set a counter c← 0.
4) Compute the modular inverse of the public keys Vi =
V −1i mod N for i = 1, . . . , t.

5) Output the public and private key pair 〈PK =
(V1, . . . , Vt), sk = z〉 and the public parameters

params = (PK ′, t, k).

σ ← CEDA.Sig(m, sk): Given a message m ∈ {0, 1}∗ to

be signed, this algorithm works as follows.

1) Generate r ← PRF2(z||c) and R ← EvalRSA(PK ′, r)
and increment the counter c← c+ 1.

2) Compute h ← H1(R) and (i1, . . . , ik) ← H2(m||h)
where {ij}kj=1 ∈ [1, t] and |ij | = log2 t.

3) Generate sij ← PRF1(z||ij) for j = 1, . . . , k and

compute γ = (
∏k
j=1 sij ) · r mod N to output the

signature as σ = (γ, h).

{0, 1} ← CEDA.Ver(m,σ,PK ): Given a message-

signature pair 〈m,σ = (γ, h)〉 and PK = (V1, . . . , Vt), this

algorithm works as follows.

1) Compute (i1, . . . , ik) ← H2(m||h) where {ij}kj=1 ∈
[1, k] and |ij | = log2 t.

2) Compute Γ ←
∏k
j=1 Vij mod N and β =

EvalRSA(PK ′, γ) · Γ mod N .

3) If H1(β) = h holds, output 1 and 0 otherwise.

V. Security Analysis

In the random oracle model [30], we prove that CEDA is

EU-CMA in Theorem 1. In our proof, we ignore terms that

are negligible in terms of our security parameters.

Theorem 1. If an adversary A can break the EU-CMA

security of our scheme in time tA after making qH hash

queries and qS signature queries, we can build another

algorithm B that runs A as a subroutine and upon outputting

a successful forgery by A, B can invert the RSA trapdoor

one-way permutation function as in De�nition 6 in time tB .

AdvEU -CMA
EDA (tA, qH , qS) ≤ AdvRSA(tB, qH , qS)



Fig. 1: High-level description of CEDA algorithms.

Proof: Let (N, e) be the output of GenRSA(1κ) as de�ned

in De�nition 5 and Y = EvalRSA((N, e), x) be the target

challenge value for the algorithm B on a random input x ∈
Z∗N . B takes Y as input and runs as follows.

Algorithm B(Y ):

• Setup: B maintains a list LM, and two tables HL1 and

HL2 that are all initially empty. LM stores messages M that

are queried to CEDA.Sig oracle by A. HL1 and HL2 store

the queries (and responses) to hash functions H1 and H2,

respectively. B sets up RO(.) and the simulated public keys

to initialize CEDA.Sig oracle as follows.

- Setup RO(.) Oracle: B implements a function H -Sim to

handle RO(.) queries to random oracles H1 and H2.

That is, the cryptographic hash functions H1 and H2 are

modeled as random oracles via H -Sim as follows.

1) h1 ← H -Sim(R,HL1): If R ∈ HL1 then H -Sim re-

turns the corresponding value h1 ← HL1(R). Other-

wise, it returns h1
$← {0, 1}l1 as the answer, and inserts

(R, h1) into HL1.

2) h2 ← H -Sim(M‖h1,HL2): If (M‖h1) ∈ HL2

then H -Sim returns the corresponding value h2 ←
HL2(M‖h1). Otherwise, it returns h2

$← {0, 1}l2 as

the answer, inserts (M‖h1, h2) into HL2.

- Setup CEDA.Sig Oracle: B selects parameters (t, k) as in

CEDA.Kg Step 1, and creates the simulated CEDA public

key as follows.

1) B generates index j
′ $← [1, t] and sets the challenge

public key as Vj′ ← Y .

2) B generates {si
$← {0, 1}µN}ti=1,i6=j′ and {Vi ←

EvalRSA((N, e), si)}ti=1,i6=j′ .

3) B sets z
$← {0, 1}κ and counter c← 0.

4) Set sk ← {si}ti=1,i6=j′ , PK ← (V1, . . . , Vt) and public

parameters params ← (t, k,N, e, c).

• Execute (M∗, σ∗)← ARO(.),CEDA.Sigsk (·)(PK ): B han-

dles A ’s queries as follows:

- Queries of A : A can query RO(.) and CEDA.Sig(·)
oracles on any message of its choice up to qH and qS times,

respectively.

1) Handle RO(.) queries: A ’s queries on H1 and H2 are

handled by H -Sim function as described above.

2) Handle CEDA.Sig queries: To answer A ’s signature

queries CEDA.Sig(·) on any message of its choice M ,

B inserts M into LM and continues as follows.

i) Pick r ∈ Z∗N and compute R′ ← EvalRSA((N, e),
r).

ii) ij
$← [1, . . . , t], j = 1, . . . , k.

iii) R← R′ ·
∏k
j=1 V

−1
ij

mod N .

iv) h
$← {0, 1}l1 and insert (R, h) in HL1.

v) If (H(M ||h)) ∈ HL2, B aborts. We call this event

BAD1. Else, it inserts (H(M‖h), 〈i1 . . . , ik〉) inHL2.

vi) Set σ = (γ, h) where γ = r, and return σ to A.
- Forgery of A : Finally, A outputs a forgery for PK as

(M∗, σ∗), where σ∗ = (γ∗, h∗). By De�nition 2,A wins the

EU -CMA experiment for CEDA if the below conditions

hold.

i) CEDA.Ver(M∗, σ∗,PK ) = 1

ii) M∗ /∈ LM

• B’s Attempt to Invert RSA Trapdoor Permutation: If A fails

in the EU -CMA experiment for CEDA, B also fails in invert-

ing the RSA trapdoor permutation function as in De�nition

5, and therefore, B aborts and returns 0.

Otherwise, if A outputs a successful forgery (M∗, σ∗),

by behaving similar to FA(x), as in [31, Lemma 1], B can

rewind A to get a second forgery (M∗, σ̃ = 〈γ̃, h̃〉) where

γ∗ 6= γ̃ and h∗ = h̃ with an overwhelming probability. Given

CEDA forgeries (M∗, σ∗ = 〈γ∗, h∗〉) and (M∗, σ̃ = 〈γ̃, h̃〉)
on PK where (M∗||h∗) = (M∗||h̃), based on [31, Lemma 1],

we know that H(M∗‖h∗) 6= H(M∗‖h̃). Then B can attempt

to break RSA trapdoor permutation function if either of the



following conditions holds.

- If (M∗‖h∗ ∈ HL2) and (j′ ∈ (i∗1 . . . , i
∗
k)) then (j′ /∈

(̃i1 . . . , ĩk)), where (i∗1 . . . , i
∗
k) ← HL2(M∗‖h∗) and

(̃i1 . . . , ĩk)← HL2(M∗‖h̃). We recall this event as GOOD1.

- If (M∗‖h∗ ∈ HL2) and (j′ /∈ (i∗1 . . . , i
∗
k)) then (j′ ∈

(̃i1 . . . , ĩk)), where (i∗1 . . . , i
∗
k) ← HL2(M∗‖h∗) and

(̃i1 . . . , ĩk)← HL2(M∗‖h̃). We recall this event as GOOD2.

In a case that none of the above conditions holds, B aborts

and fails to break RSA, otherwise, it works as follows.

- Case 1: If j′ ∈ (i∗1 . . . , i
∗
k) and j′ /∈ (̃i1 . . . , ĩk), set x̃ ←

γ∗
∏k

j=1 sĩj/γ̃
∏k

j=1,j 6=j′ si∗j
mod N .

- Case 2: If j′ /∈ (i∗1 . . . , i
∗
k) and j′ ∈ (ĩ1 . . . , ĩk), set x̃ ←

γ̃
∏k

j=1 si∗j/γ
∗∏k

j=1,j 6=j′ sĩj
mod N .

Then, if x̃ = x implies that B has inverted RSA permutation

function without any knowledge of the trapdoor.

- Success Probability Analysis: We analyze the events that

are needed for B to successfully invert RSA as follows.

- BAD1: B may abort in the simulation phase when the ad-

versary queries the CEDA.Sig oracle. This event happens

when the randomly drawn (i1, . . . , ik) already exists in

HL2. This can happen with the probability (qH−1)qS/2l.

- ACC: The success probability of A to win the game in

De�nition 2 is as in [31, Lemma 1].

- FRK: B receives two valid forgeries from A for the target

message.

- BAD2: If A successfully outputs a forgery in each of the

runs, then B will break RSA if (GOOD1 ∨ GOOD2) happens

for the forged signatures. (GOOD1 ∨ GOOD2) can happen

with a non-negligible probability of 2k(t−k)/t2. Note that

given the random behavior of our hash function, we con-

sider the probability ((M∗||h∗ /∈ HL2) ∨ (M∗‖h̃ /∈ HL2))
to be negligible in the case of the above event.

We bound the success probability of A as de�ned in [31,

Lemma 1] as ACC ≥ εA−Pr[BAD1]. The probability that BAD1

occurs can be upper-bounded by (qH−1)qS/2l2 , and therefore,

ACC ≥ εA − (qH−1)qS/2l2 .

The probability of B in breaking RSA is given by:

εB ≥ FRK · BAD2

≥
(

ACC
2

qH + qS
− 1

2l2

)
· BAD2

≥
(

ε2A
(qH + qS)

− 2((qH − 1)qS)

2l2(qH + qS)
− 1

2l2

)
· 2k(t− k)

t2

Target Collision of Hash Function (H2): Following the

work of [32], the security of our scheme relies on the subset

resiliency of the underlying hash function. We “salt” the

hash of each signature with a one-time randomness so that

A does not know the internal state of the hash function when

they want to compute a collision. Therefore, we reduce the

hardness of our signature scheme from collision resistance to

target-collision resistance. Therefore, considering k subsets in

the hash output, and the number of A’s signature queries

qS , the target collision resiliency of our hash function is

qS ·k!
2l2

. The k! factor comes in place since we should consider

di�erent permutations of the indexes in the hash output

which would potentially result in a collision and forgery.

VI. Performance Analysis and Comparison

We �rst compare the analytical costs of CEDA with its

counterparts and then describe our evaluation metrics along

with the experimental setup. We then present our detailed

experimental results on both commodity hardware and an

ARM processor. Note that we only compare our scheme

with the state-of-the-art digital signatures with a constant-

size key/token storage overhead. Moreover, we also con-

sider optimization techniques such as constant storage pre-

computation [19] and e�cient curves [22]. Further note that

in [13], authors proposed three instantiations of SCRA: (i)

SCRA-C-RSA (ii) SCRA-BGLS (iii) SCRA-NTRU. We compare

the cost of CEDA with SCRA-C-RSA since it achieves the

lowest end-to-end delay among these three schemes with a

mid-size table stored at the signer’s side [13].

A. Analytical Performance Comparison
Table III shows the analytical comparison of CEDA with

its state-of-the-art counterparts.

Signer Computation and Storage: In CEDA, signature

generation only requires an exponentiation over the small

exponent e and a small-constant number of hash calls, which

have an (almost) negligible overhead (implemented with

highly optimized Blake2 [33]). The small exponent is selected

as e = 65537 to ensure the security, while enabling the

computational e�ciency as such an exponentiation can only

be done with 16 squarings and a single multiplication via

square-and-multiply algorithm. Moreover, CEDA has a much

smaller private key size than that of its delay-aware variants

as well as the RSA signature, since the signer does not store

a pre-computed table or the RSA private key d.

RSA and ECDSA require an exponentiation over large

exponent and elliptic curve scalar multiplication(s), respec-

tively, both of which are considered as expensive compu-

tations. BPV-ECDSA eliminates the scalar multiplication in

ECDSA [7] in exchange of some elliptic curve additions [19].

However, it requires storing a pre-computation table at the

signer’s side. Ed25519 scheme [22] uses e�cient twisted

Edwards’ curve to perform scalar multiplications. It also has

a very compact private key. SCRA-C-RSA [13] only requires

L multiplications to compute the signature, where L is

suggested to be 32. However, this scheme requires a very

large private key of 2MB, which may not be feasible for some

resource-constrained devices.

Signature Transmission: CEDA has a compact signature

that has the same size with standard RSA signature scheme.

However, elliptic curve based schemes o�er more compact

signatures. More speci�cally, signature length in RSA-based

schemes, including CEDA, require at least |N | + |H| bits

where |N | = 3072 bits for κ = 128 bit security. On the

other hand elliptic curve based schemes require a signature

size of |q′|+ |H| where |q′| = 256 bits.



TABLE III: Analytical performance comparison of CEDA and its counterparts.

Scheme Signer Transmission Veri�er

Private Key†
Signature

Generation¶ Signature† Public Key†
Signature

Veri�cation¶

RSA |N |+ |d| Expd |N | |N |+ |e| Expe
ECDSA |q′| Emul +H +Mulq′ |q′|+ |H| |q′| 1.3 · Emul + Eadd+H

BPV-ECDSA |q′|+ T1 v · Eadd+H +Mulq′ |q′|+ |H| |q′| 1.3 · Emul + Eadd+H
Ed25519 |q′| Emul25519 + 2H +Mulq′ |q′|+ |H| |q′| 1.3 · Emul25519 + Eadd25519 +H

SCRA-C-RSA |N |+ T2 L ·MulN |N |+ |H|+ κ |N |+ |e|+ κ Expe + L ·H + L ·MulN

CEDA |z|+ |N | (k + 3) ·H + Expe |N |+ |H| |N |+ |e|+ PK Expe + k ·MulN

¶ Expe and Expd denote exponentiation over the small exponent e and large exponent d, respectively. Emul and Eadd denote the costs of EC

scalar multiplication over modulus p′, and EC addition over modulus p, respectively. Emul and Eadd are performed in secp256r1, where Emul25519
and Eadd25519 are performed on twisted Edwards’ curve. H and Mulq′ denote a cryptographic hash and a modular multiplication over modulus

q′, respectively. We omit the constant number of negligible operations if there is an expensive operation (e.g., integer additions are omitted if there is

an Emul or Expe). We use double-point scalar multiplication for veri�cations of ECC based schemes (1.3 · Emul instead of 2 · Emul [34]).

Suggested parameters for v, L, k are 32 [19], 32 [13], and 26, respectively.

† For κ = 128, the parameter sizes are: |N | = 3072 bit, |e| = 17 bit, |d| ≈ 3072 bit, and |z| = 128 bit. The size of the pre-computation tables with

the suggested parameters for BPV-ECDSA [19], SCRA-C-RSA [13] and CEDA are 384 KB, 10KB [19] and 2MB [13] for PK , T1 and T2, respectively.

For ECC-based schemes, (p′, q′) are ECC parameters where |p′| = |q′| = 256 bit.

Veri�er Computation and Storage: CEDA has an ultra

e�cient veri�cation algorithm since it only requires an expo-

nentiation over e and k multiplications, where k is suggested

to be 26. However, CEDA has a relatively large public key

size, that requires storing a table. This table has a size of

t · |N |, where t = 1024 and |N | = 3072 bits. On the other

hand, all elliptic curve based counterparts have a very small

public key of size 32 bytes, but they require a double scalar

multiplication for veri�cation. Double scalar multiplication

can be accelerated with Shamir’s trick [34], however, this

is still a very expensive operation, and to the best of our

knowledge, there are no pre-computation methods to speed-

up this operation. RSA veri�cation is the fastest among all

schemes, since it only requires an exponentiation over e. It

also has a compact public key size of |N | + |e|. SCRA-C-

RSA requires exponentiation over e along with L hash and

multiplication calls, where L is suggested to be 32 [13]. As

for the public key size, it only requires and additional κ bits

to be stored, in addition to traditional RSA [6].

Our analytical analysis shows that CEDA only requires

a small-constant number of inexpensive operations at the

signer’s and veri�er’s sides, which makes it a suitable alter-

native for delay-aware applications. It has a compact private

key and signature size as compared to that of its delay-aware

signature alternatives. However, it can be seen that elliptic

curve-based counterparts o�er more compact private key and

signatures than CEDA, but with the cost of a large end-to-

end delay. The main limitation of CEDA is its relatively large

public key size, which can be readily stored by veri�ers for

many real-life applications.

B. Experimental Evaluation

Evaluation Metrics: We implemented CEDA both on an

IoT device (ARM Cortex A53) and commodity hardware. We

also ran our counterparts on both devices to compare the

signature generation and veri�cation times. Moreover, we

discuss the signer’s and veri�er’s storage, along with the

transmission requirement of each signature scheme.

Software Libraries and Implementation: We developed

two implementations of CEDA in C, one with MIRACL [35]

and the other with GMP [36]. We observed that GMP imple-

mentation is signi�cantly faster, and therefore we present

our results in GMP. We use Blake2 as our cryptographic

hash function and PRF due to its high e�ciency [33]. We

use portable implementation of Blake2 hash, b2 library. We

have open-sourced our implementation of CEDA for wide

adaptation and comparison.

https://github.com/ozgurozmen/CEDA

Aside from the hash functions and RSA parameters, the

security of CEDA relies on the parameters (t, k). More specif-

ically, CEDA security depends on the number of di�erent k-

out-of-t combinations possible and also the target collision

(
k!
2l2

) as described in Section V. We selected t = 1024
and k = 26 which guarantees 2172 di�erent combinations

and a target collision probability of
1

2171 . CEDA can be

instantiated with di�erent t and k parameters to o�er a trade-

o� between computation and storage. For instance, t = 256,

k = 32 also provide a high security level, with smaller

storage but slower computation. Since |N | = 3072 provides

approximately κ = 128-bit security, all in all, our current

CEDA implementation o�ers κ = 128-bit security.

We benchmarked the ECDSA implementation in MIRACL

library [35]. We applied BPV pre-computation technique [19]

to ECDSA implementation of MIRACL. For Ed25519, we

used the Supercop implementation [22]. Note that BPV pre-

computation technique cannot be directly incorporated into

Ed25519 scheme, since the randomness is generated deter-

ministically with the message that is being signed. We also

benchmarked RSA [6] with GMP library in C [36]. SCRA-C-

RSA was implemented in MIRACL library in [13], however,

our experiments showed us that MIRACL is signi�cantly

slower than GMP for modular exponentiations and multipli-

cations. Therefore, for the purpose of fairness, we measured

SCRA-C-RSA costs with GMP library. Moreover, we observed

that authors selected the small exponent in RSA as e = 3, that

is not recommended [37]. Therefore, we calculated SCRA-C-



TABLE IV: Experimental performance comparison of CEDA and its counterparts on commodity hardware.

Scheme Signer Transmission Veri�er End-to-EndSignature Generation
Time (µs)

Private Key
(Byte)

Signature
Size (Byte)

Signature Veri�cation
Time (µs)

Public Key
(Byte) Delay (µs)

RSA 8083.26 768 416 47.74 386 8131.00

ECDSA 725.38 32 64 927.30 32 1652.68

BPV-ECDSA 149.60 10272 64 927.30 32 1076.9

Ed25519 132.61 32 64 335.95 32 468.56

SCRA-C-RSA 88.67 2000000 432 164.85 384 253.52

CEDA 55.33 416 416 115.45 393600 170.78

RSA costs with e = 65537 (as in CEDA implementation).

Hardware Con�gurations: We benchmarked our scheme

and its counterparts on an ARM Cortex A53 processor as the

IoT device. ARM Cortex A53 is a low-cost and low energy

consuming (can work with small batteries) device with a

powerful processor [38]. Therefore, it is highly preferred in

IoT applications [39]. We used a laptop equipped with Intel

Core i7 6700HQ 2.6 GHz processor and 12GB RAM as the

commodity hardware.

C. Performance Evaluation
Table I and Table IV depict the experimental results of

CEDA and its counterparts on ARM Cortex A53 and com-

modity hardware, respectively.

IoT Device: Our experiments on ARM Cortex A53 show

that CEDA is the fastest signature scheme among its coun-

terparts. CEDA outperforms all its counterparts in terms of

signature generation and veri�cation speeds (the only excep-

tion is RSA veri�cation, however the signature generation of

RSA is very expensive). More speci�cally, CEDA has 1.56×,

1.98×, and 3.03× lower end-to-end delay as compared to

SCRA-C-RSA, Ed25519, and BPV-ECDSA (as its most e�cient

counterparts), respectively. Although CEDA requires a larger

storage requirement at the veri�er’s side, due to the larger

public key (≈ 393 KB), it is still highly achiveable with the

storage capabilities of IoT devices such as ARM Cortex A53.

Energy consumption hinders the full adoption of crypto-

graphic protocols to IoT systems. Therefore, it is highly useful

to provide an energy-e�cient cryptographic protocol for IoT

systems. Note that computational energy consumption can

be calculated with the formula E = V · I · t, where V is the

voltage processor is taking, I is the current drawn by the pro-

cessor and t is the computation time. Considering most IoT

processors work with constant currents and voltages in active

mode, computation time should be optimized to decrease

the energy consumption. Thus, computational e�ciency of

CEDA drastically reduces the energy consumption and we

believe that it is the most suitable signature scheme to be

deployed in energy-critical applications.

Commodity Hardware: The signature generation of

CEDA is 1.60× faster than that of SCRA-C-RSA (the fastest

counterpart), which has a large private key (2MB). We note

that CEDA can generate 18,070 signatures per second, which

can meet the high throughput requirements of various real-

life applications. For instance, as discussed in Section I-B, ve-

hicular networks may require a signi�cantly large throughput

for signature generation [2]. With the hardware con�guration

described, CEDA o�ers a signing speed way above this re-

quirement, which can be suitable for infrastructure-to-vehicle

communication. Therefore, we believe CEDA can potentially

meet the needs of even the most stringent requirements of

high signing throughput applications.

CEDA signature veri�cation is also 1.43× and 2.91× faster

than that of SCRA-C-RSA and Ed25519 (the fastest counter-

parts with reasonable end-to-end delay), respectively. Note

that standard RSA has 2× faster veri�cation than CEDA.

However, its signature generation is 146.17× slower, which

is not suitable for delay-aware applications. The signature

veri�cation time is highly critical for applications that require

a fast response to the commands/messages. We believe that

CEDA is highly suitable for such applications with a very

fast veri�cation and end-to-end delay. Speci�cally, veri�cation
throughput of CEDA is 8,660 signatures per second. However,

as depicted in Table IV, CEDA requires storing a public

key of size almost 393 KB at the veri�er’s side, when

t = 1024. Therefore, if the veri�er is storage-limited, di�erent

parameters (e.g. t = 256, k = 32) can be used to instantiate

CEDA with a storage-computation trade-o�.

VII. Conclusion

In this paper, towards addressing the authentication

requirements of time-critical applications, we created a

novel delay-aware digital signature scheme that we refer to

as Compact Energy and Delay-aware Authentication (CEDA).

CEDA achieves the lowest end-to-end cryptographic delay

among all of its counterparts by o�ering the fastest signature

generation along with a highly e�cient veri�cation.

Moreover CEDA requires only a small-constant size private

key and signature, which are smaller than its most e�cient

delay-aware counterparts. Our experiments on ARM and

Intel processors further con�rmed the signi�cant speed

advantages of CEDA over its counterparts with compact

signer storage overhead. On the other hand, CEDA has a

larger public key size than that of its counterparts. Overall,

by o�ering the lowest end-to-end delay with small private

key and signature sizes, CEDA is an ideal authentication

tool for delay-aware critical systems such as energy delivery

(e.g., smart-grids) and mobile cyber-physical systems (e.g.,

vehicular and aerial drone networks). We open-sourced our

implementation for public testing and adaptation purposes.
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